Acupuncture and tuina knowledge graph with prompt learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3389/fdata.2024.1346958
Introduction Acupuncture and tuina, acknowledged as ancient and highly efficacious therapeutic modalities within the domain of Traditional Chinese Medicine (TCM), have provided pragmatic treatment pathways for numerous patients. To address the problems of ambiguity in the concept of Traditional Chinese Medicine (TCM) acupuncture and tuina treatment protocols, the lack of accurate quantitative assessment of treatment protocols, and the diversity of TCM systems, we have established a map-filling technique for modern literature to achieve personalized medical recommendations. Methods (1) Extensive acupuncture and tuina data were collected, analyzed, and processed to establish a concise TCM domain knowledge base. (2)A template-free Chinese text NER joint training method (TemplateFC) was proposed, which enhances the EntLM model with BiLSTM and CRF layers. Appropriate rules were set for ERE. (3) A comprehensive knowledge graph comprising 10,346 entities and 40,919 relationships was constructed based on modern literature. Results A robust TCM KG with a wide range of entities and relationships was created. The template-free joint training approach significantly improved NER accuracy, especially in Chinese text, addressing issues related to entity identification and tokenization differences. The KG provided valuable insights into acupuncture and tuina, facilitating efficient information retrieval and personalized treatment recommendations. Discussion The integration of KGs in TCM research is essential for advancing diagnostics and interventions. Challenges in NER and ERE were effectively tackled using hybrid approaches and innovative techniques. The comprehensive TCM KG our built contributes to bridging the gap in TCM knowledge and serves as a valuable resource for specialists and non-specialists alike.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fdata.2024.1346958
- https://www.frontiersin.org/articles/10.3389/fdata.2024.1346958/pdf?isPublishedV2=False
- OA Status
- gold
- Cited By
- 4
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394575962
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394575962Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fdata.2024.1346958Digital Object Identifier
- Title
-
Acupuncture and tuina knowledge graph with prompt learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-08Full publication date if available
- Authors
-
Xiaoran Li, Xiaosong Han, Siqing Wei, Yanchun Liang, Renchu GuanList of authors in order
- Landing page
-
https://doi.org/10.3389/fdata.2024.1346958Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fdata.2024.1346958/pdf?isPublishedV2=FalseDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fdata.2024.1346958/pdf?isPublishedV2=FalseDirect OA link when available
- Concepts
-
Acupuncture, Computer science, Artificial intelligence, Medicine, Psychology, Alternative medicine, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394575962 |
|---|---|
| doi | https://doi.org/10.3389/fdata.2024.1346958 |
| ids.doi | https://doi.org/10.3389/fdata.2024.1346958 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38650693 |
| ids.openalex | https://openalex.org/W4394575962 |
| fwci | 2.5551142 |
| type | article |
| title | Acupuncture and tuina knowledge graph with prompt learning |
| awards[0].id | https://openalex.org/G2229797159 |
| awards[0].funder_id | https://openalex.org/F4320310121 |
| awards[0].display_name | |
| awards[0].funder_award_id | 20200708112YY |
| awards[0].funder_display_name | Natural Science Foundation of Jilin Province |
| awards[1].id | https://openalex.org/G3095911524 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62372494 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G1518729344 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 62172187 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G6945563364 |
| awards[3].funder_id | https://openalex.org/F4320326279 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2021KCXTD015 |
| awards[3].funder_display_name | Department of Education of Guangdong Province |
| awards[4].id | https://openalex.org/G1030696380 |
| awards[4].funder_id | https://openalex.org/F4320335795 |
| awards[4].display_name | |
| awards[4].funder_award_id | 2022ZDJS139 |
| awards[4].funder_display_name | Science and Technology Planning Project of Guangdong Province |
| awards[5].id | https://openalex.org/G2929457652 |
| awards[5].funder_id | https://openalex.org/F4320335795 |
| awards[5].display_name | |
| awards[5].funder_award_id | 2020A0505100018 |
| awards[5].funder_display_name | Science and Technology Planning Project of Guangdong Province |
| awards[6].id | https://openalex.org/G611205877 |
| awards[6].funder_id | https://openalex.org/F4320335777 |
| awards[6].display_name | |
| awards[6].funder_award_id | 2021YFF1201200 |
| awards[6].funder_display_name | National Key Research and Development Program of China |
| awards[7].id | https://openalex.org/G4268964516 |
| awards[7].funder_id | https://openalex.org/F4320310121 |
| awards[7].display_name | |
| awards[7].funder_award_id | 20220201145GX |
| awards[7].funder_display_name | Natural Science Foundation of Jilin Province |
| awards[8].id | https://openalex.org/G1695356850 |
| awards[8].funder_id | https://openalex.org/F4320335795 |
| awards[8].display_name | |
| awards[8].funder_award_id | 2021ZDJS138 |
| awards[8].funder_display_name | Science and Technology Planning Project of Guangdong Province |
| awards[9].id | https://openalex.org/G8766070812 |
| awards[9].funder_id | https://openalex.org/F4320310121 |
| awards[9].display_name | |
| awards[9].funder_award_id | 20220601112FG |
| awards[9].funder_display_name | Natural Science Foundation of Jilin Province |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 1346958 |
| biblio.first_page | 1346958 |
| topics[0].id | https://openalex.org/T13083 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9241999983787537 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Text Analysis Techniques |
| funders[0].id | https://openalex.org/F4320310121 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Jilin Province |
| funders[1].id | https://openalex.org/F4320321001 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | National Natural Science Foundation of China |
| funders[2].id | https://openalex.org/F4320326279 |
| funders[2].ror | |
| funders[2].display_name | Department of Education of Guangdong Province |
| funders[3].id | https://openalex.org/F4320335777 |
| funders[3].ror | |
| funders[3].display_name | National Key Research and Development Program of China |
| funders[4].id | https://openalex.org/F4320335795 |
| funders[4].ror | |
| funders[4].display_name | Science and Technology Planning Project of Guangdong Province |
| is_xpac | False |
| apc_list.value | 1150 |
| apc_list.currency | USD |
| apc_list.value_usd | 1150 |
| apc_paid.value | 1150 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1150 |
| concepts[0].id | https://openalex.org/C56837625 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5988671779632568 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q121713 |
| concepts[0].display_name | Acupuncture |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4126279354095459 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.38518109917640686 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3608750104904175 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3519444465637207 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C204787440 |
| concepts[5].level | 2 |
| concepts[5].score | 0.24373313784599304 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188504 |
| concepts[5].display_name | Alternative medicine |
| concepts[6].id | https://openalex.org/C142724271 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[6].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/acupuncture |
| keywords[0].score | 0.5988671779632568 |
| keywords[0].display_name | Acupuncture |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4126279354095459 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.38518109917640686 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.3608750104904175 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.3519444465637207 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/alternative-medicine |
| keywords[5].score | 0.24373313784599304 |
| keywords[5].display_name | Alternative medicine |
| language | en |
| locations[0].id | doi:10.3389/fdata.2024.1346958 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201220 |
| locations[0].source.issn | 2624-909X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-909X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Big Data |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fdata.2024.1346958/pdf?isPublishedV2=False |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Big Data |
| locations[0].landing_page_url | https://doi.org/10.3389/fdata.2024.1346958 |
| locations[1].id | pmid:38650693 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in big data |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38650693 |
| locations[2].id | pmh:oai:doaj.org/article:cd973df8091e439b955e867dbe1106af |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Big Data, Vol 7 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/cd973df8091e439b955e867dbe1106af |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11033463 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Big Data |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11033463 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100697542 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2609-3554 |
| authorships[0].author.display_name | Xiaoran Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| authorships[0].institutions[0].id | https://openalex.org/I194450716 |
| authorships[0].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jilin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoran Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| authorships[1].author.id | https://openalex.org/A5086030064 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1088-7998 |
| authorships[1].author.display_name | Xiaosong Han |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| authorships[1].institutions[0].id | https://openalex.org/I194450716 |
| authorships[1].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jilin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaosong Han |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| authorships[2].author.id | https://openalex.org/A5111679068 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Siqing Wei |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| authorships[2].institutions[0].id | https://openalex.org/I194450716 |
| authorships[2].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jilin University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siqing Wei |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| authorships[3].author.id | https://openalex.org/A5076665413 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1147-3968 |
| authorships[3].author.display_name | Yanchun Liang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210165204 |
| authorships[3].affiliations[1].raw_affiliation_string | Zhuhai Laboratory of Key Laboratory for Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology of Zhuhai College of Science and Technology, Zhuhai, China |
| authorships[3].institutions[0].id | https://openalex.org/I194450716 |
| authorships[3].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jilin University |
| authorships[3].institutions[1].id | https://openalex.org/I4210165204 |
| authorships[3].institutions[1].ror | https://ror.org/05r1mzq61 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761, https://openalex.org/I4210165204 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Zhuhai Institute of Advanced Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yanchun Liang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China, Zhuhai Laboratory of Key Laboratory for Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology of Zhuhai College of Science and Technology, Zhuhai, China |
| authorships[4].author.id | https://openalex.org/A5007914848 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7162-7826 |
| authorships[4].author.display_name | Renchu Guan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| authorships[4].institutions[0].id | https://openalex.org/I194450716 |
| authorships[4].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jilin University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Renchu Guan |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology Jilin University, Changchun, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fdata.2024.1346958/pdf?isPublishedV2=False |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Acupuncture and tuina knowledge graph with prompt learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13083 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9241999983787537 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Text Analysis Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fdata.2024.1346958 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201220 |
| best_oa_location.source.issn | 2624-909X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-909X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Big Data |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fdata.2024.1346958/pdf?isPublishedV2=False |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Big Data |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fdata.2024.1346958 |
| primary_location.id | doi:10.3389/fdata.2024.1346958 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201220 |
| primary_location.source.issn | 2624-909X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-909X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Big Data |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fdata.2024.1346958/pdf?isPublishedV2=False |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Big Data |
| primary_location.landing_page_url | https://doi.org/10.3389/fdata.2024.1346958 |
| publication_date | 2024-04-08 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4385572307, https://openalex.org/W3176489198, https://openalex.org/W2216436712, https://openalex.org/W3002226419, https://openalex.org/W6768058859, https://openalex.org/W3092314298, https://openalex.org/W4205834394, https://openalex.org/W3003503920, https://openalex.org/W3207577858, https://openalex.org/W3002881589, https://openalex.org/W3205496902, https://openalex.org/W3048905934, https://openalex.org/W4214676609, https://openalex.org/W6801420120, https://openalex.org/W4295736374, https://openalex.org/W4366336804, https://openalex.org/W2144578941, https://openalex.org/W4252219106, https://openalex.org/W2803478834, https://openalex.org/W2383516497, https://openalex.org/W2417399417, https://openalex.org/W4214734349, https://openalex.org/W2750779823, https://openalex.org/W2974004142, https://openalex.org/W3201983976 |
| referenced_works_count | 25 |
| abstract_inverted_index.A | 124, 141 |
| abstract_inverted_index.a | 65, 90, 146, 240 |
| abstract_inverted_index.KG | 144, 178, 226 |
| abstract_inverted_index.To | 28 |
| abstract_inverted_index.as | 5, 239 |
| abstract_inverted_index.in | 34, 165, 199, 210, 234 |
| abstract_inverted_index.is | 202 |
| abstract_inverted_index.of | 15, 32, 37, 49, 53, 59, 149, 197 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 71, 88, 171, 230 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.(1) | 77 |
| abstract_inverted_index.(3) | 123 |
| abstract_inverted_index.CRF | 115 |
| abstract_inverted_index.ERE | 213 |
| abstract_inverted_index.KGs | 198 |
| abstract_inverted_index.NER | 100, 162, 211 |
| abstract_inverted_index.TCM | 60, 92, 143, 200, 225, 235 |
| abstract_inverted_index.The | 155, 177, 195, 223 |
| abstract_inverted_index.and | 2, 7, 43, 56, 80, 86, 114, 131, 151, 174, 184, 190, 207, 212, 220, 237, 245 |
| abstract_inverted_index.for | 25, 68, 121, 204, 243 |
| abstract_inverted_index.gap | 233 |
| abstract_inverted_index.our | 227 |
| abstract_inverted_index.set | 120 |
| abstract_inverted_index.the | 13, 30, 35, 47, 57, 109, 232 |
| abstract_inverted_index.was | 105, 134, 153 |
| abstract_inverted_index.(2)A | 96 |
| abstract_inverted_index.ERE. | 122 |
| abstract_inverted_index.data | 82 |
| abstract_inverted_index.have | 20, 63 |
| abstract_inverted_index.into | 182 |
| abstract_inverted_index.lack | 48 |
| abstract_inverted_index.text | 99 |
| abstract_inverted_index.were | 83, 119, 214 |
| abstract_inverted_index.wide | 147 |
| abstract_inverted_index.with | 112, 145 |
| abstract_inverted_index.(TCM) | 41 |
| abstract_inverted_index.EntLM | 110 |
| abstract_inverted_index.base. | 95 |
| abstract_inverted_index.based | 136 |
| abstract_inverted_index.built | 228 |
| abstract_inverted_index.graph | 127 |
| abstract_inverted_index.joint | 101, 157 |
| abstract_inverted_index.model | 111 |
| abstract_inverted_index.range | 148 |
| abstract_inverted_index.rules | 118 |
| abstract_inverted_index.text, | 167 |
| abstract_inverted_index.tuina | 44, 81 |
| abstract_inverted_index.using | 217 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.(TCM), | 19 |
| abstract_inverted_index.10,346 | 129 |
| abstract_inverted_index.40,919 | 132 |
| abstract_inverted_index.BiLSTM | 113 |
| abstract_inverted_index.alike. | 247 |
| abstract_inverted_index.domain | 14, 93 |
| abstract_inverted_index.entity | 172 |
| abstract_inverted_index.highly | 8 |
| abstract_inverted_index.hybrid | 218 |
| abstract_inverted_index.issues | 169 |
| abstract_inverted_index.method | 103 |
| abstract_inverted_index.modern | 69, 138 |
| abstract_inverted_index.robust | 142 |
| abstract_inverted_index.serves | 238 |
| abstract_inverted_index.tuina, | 3, 185 |
| abstract_inverted_index.within | 12 |
| abstract_inverted_index.Chinese | 17, 39, 98, 166 |
| abstract_inverted_index.Methods | 76 |
| abstract_inverted_index.Results | 140 |
| abstract_inverted_index.achieve | 72 |
| abstract_inverted_index.address | 29 |
| abstract_inverted_index.ancient | 6 |
| abstract_inverted_index.concept | 36 |
| abstract_inverted_index.concise | 91 |
| abstract_inverted_index.layers. | 116 |
| abstract_inverted_index.medical | 74 |
| abstract_inverted_index.related | 170 |
| abstract_inverted_index.tackled | 216 |
| abstract_inverted_index.Medicine | 18, 40 |
| abstract_inverted_index.accurate | 50 |
| abstract_inverted_index.approach | 159 |
| abstract_inverted_index.bridging | 231 |
| abstract_inverted_index.created. | 154 |
| abstract_inverted_index.enhances | 108 |
| abstract_inverted_index.entities | 130, 150 |
| abstract_inverted_index.improved | 161 |
| abstract_inverted_index.insights | 181 |
| abstract_inverted_index.numerous | 26 |
| abstract_inverted_index.pathways | 24 |
| abstract_inverted_index.problems | 31 |
| abstract_inverted_index.provided | 21, 179 |
| abstract_inverted_index.research | 201 |
| abstract_inverted_index.resource | 242 |
| abstract_inverted_index.systems, | 61 |
| abstract_inverted_index.training | 102, 158 |
| abstract_inverted_index.valuable | 180, 241 |
| abstract_inverted_index.Extensive | 78 |
| abstract_inverted_index.accuracy, | 163 |
| abstract_inverted_index.advancing | 205 |
| abstract_inverted_index.ambiguity | 33 |
| abstract_inverted_index.analyzed, | 85 |
| abstract_inverted_index.diversity | 58 |
| abstract_inverted_index.efficient | 187 |
| abstract_inverted_index.essential | 203 |
| abstract_inverted_index.establish | 89 |
| abstract_inverted_index.knowledge | 94, 126, 236 |
| abstract_inverted_index.patients. | 27 |
| abstract_inverted_index.pragmatic | 22 |
| abstract_inverted_index.processed | 87 |
| abstract_inverted_index.proposed, | 106 |
| abstract_inverted_index.retrieval | 189 |
| abstract_inverted_index.technique | 67 |
| abstract_inverted_index.treatment | 23, 45, 54, 192 |
| abstract_inverted_index.Challenges | 209 |
| abstract_inverted_index.Discussion | 194 |
| abstract_inverted_index.addressing | 168 |
| abstract_inverted_index.approaches | 219 |
| abstract_inverted_index.assessment | 52 |
| abstract_inverted_index.collected, | 84 |
| abstract_inverted_index.comprising | 128 |
| abstract_inverted_index.especially | 164 |
| abstract_inverted_index.innovative | 221 |
| abstract_inverted_index.literature | 70 |
| abstract_inverted_index.modalities | 11 |
| abstract_inverted_index.protocols, | 46, 55 |
| abstract_inverted_index.Acupuncture | 1 |
| abstract_inverted_index.Appropriate | 117 |
| abstract_inverted_index.Traditional | 16, 38 |
| abstract_inverted_index.acupuncture | 42, 79, 183 |
| abstract_inverted_index.constructed | 135 |
| abstract_inverted_index.contributes | 229 |
| abstract_inverted_index.diagnostics | 206 |
| abstract_inverted_index.effectively | 215 |
| abstract_inverted_index.efficacious | 9 |
| abstract_inverted_index.established | 64 |
| abstract_inverted_index.information | 188 |
| abstract_inverted_index.integration | 196 |
| abstract_inverted_index.literature. | 139 |
| abstract_inverted_index.map-filling | 66 |
| abstract_inverted_index.specialists | 244 |
| abstract_inverted_index.techniques. | 222 |
| abstract_inverted_index.therapeutic | 10 |
| abstract_inverted_index.(TemplateFC) | 104 |
| abstract_inverted_index.Introduction | 0 |
| abstract_inverted_index.acknowledged | 4 |
| abstract_inverted_index.differences. | 176 |
| abstract_inverted_index.facilitating | 186 |
| abstract_inverted_index.personalized | 73, 191 |
| abstract_inverted_index.quantitative | 51 |
| abstract_inverted_index.tokenization | 175 |
| abstract_inverted_index.comprehensive | 125, 224 |
| abstract_inverted_index.relationships | 133, 152 |
| abstract_inverted_index.significantly | 160 |
| abstract_inverted_index.template-free | 97, 156 |
| abstract_inverted_index.identification | 173 |
| abstract_inverted_index.interventions. | 208 |
| abstract_inverted_index.non-specialists | 246 |
| abstract_inverted_index.recommendations. | 75, 193 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5007914848 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I194450716 |
| citation_normalized_percentile.value | 0.86702538 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |