AD-NEv: A Scalable Multilevel Neuroevolution Framework for Multivariate Anomaly Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/tnnls.2024.3439404
Anomaly detection tools and methods present a key capability in modern cyberphysical and failure prediction systems. Despite the fast-paced development in deep learning architectures for anomaly detection, model optimization for a given dataset is a cumbersome and time-consuming process. Neuroevolution could be an effective and efficient solution to this problem, as a fully automated search method for learning optimal neural networks, supporting both gradient and nongradient fine-tuning. However, existing methods mostly focus on optimizing model architectures without taking into account feature subspaces and model weights. In this work, we propose anomaly detection neuroevolution (AD-NEv)-a scalable multilevel optimized neuroevolution framework for multivariate time-series anomaly detection. The method represents a novel approach to synergically: 1) optimize feature subspaces for an ensemble model based on the bagging technique; 2) optimize the model architecture of single anomaly detection models; and 3) perform nongradient fine-tuning of network weights. An extensive experimental evaluation on widely adopted multivariate anomaly detection benchmark datasets shows that the models extracted by AD-NEv outperform well-known deep learning architectures for anomaly detection. Moreover, results show that AD-NEv can perform the whole process efficiently, presenting high scalability when multiple graphics processing units (GPUs) are available.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnnls.2024.3439404
- OA Status
- hybrid
- Cited By
- 4
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401596698
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401596698Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnnls.2024.3439404Digital Object Identifier
- Title
-
AD-NEv: A Scalable Multilevel Neuroevolution Framework for Multivariate Anomaly DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-14Full publication date if available
- Authors
-
Marcin Pietroń, Dominik Żurek, Kamil Faber, Roberto CorizzoList of authors in order
- Landing page
-
https://doi.org/10.1109/tnnls.2024.3439404Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/tnnls.2024.3439404Direct OA link when available
- Concepts
-
Multivariate statistics, Anomaly detection, Computer science, Neuroevolution, Anomaly (physics), Scalability, Univariate, Artificial intelligence, Artificial neural network, Machine learning, Physics, Condensed matter physics, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401596698 |
|---|---|
| doi | https://doi.org/10.1109/tnnls.2024.3439404 |
| ids.doi | https://doi.org/10.1109/tnnls.2024.3439404 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39141460 |
| ids.openalex | https://openalex.org/W4401596698 |
| fwci | 2.5551142 |
| type | article |
| title | AD-NEv: A Scalable Multilevel Neuroevolution Framework for Multivariate Anomaly Detection |
| biblio.issue | 5 |
| biblio.volume | 36 |
| biblio.last_page | 8953 |
| biblio.first_page | 8939 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9559000134468079 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9240000247955322 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| funders[0].id | https://openalex.org/F4320326815 |
| funders[0].ror | |
| funders[0].display_name | Infrastruktura PL-Grid |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C161584116 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7789039611816406 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[0].display_name | Multivariate statistics |
| concepts[1].id | https://openalex.org/C739882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6503195762634277 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[1].display_name | Anomaly detection |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6427296996116638 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C118070581 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6405420899391174 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2060528 |
| concepts[3].display_name | Neuroevolution |
| concepts[4].id | https://openalex.org/C12997251 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5625450015068054 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[4].display_name | Anomaly (physics) |
| concepts[5].id | https://openalex.org/C48044578 |
| concepts[5].level | 2 |
| concepts[5].score | 0.552553117275238 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[5].display_name | Scalability |
| concepts[6].id | https://openalex.org/C199163554 |
| concepts[6].level | 3 |
| concepts[6].score | 0.48495960235595703 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1681619 |
| concepts[6].display_name | Univariate |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38940322399139404 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.2707896828651428 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2685457766056061 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.05720296502113342 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C26873012 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[11].display_name | Condensed matter physics |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[0].score | 0.7789039611816406 |
| keywords[0].display_name | Multivariate statistics |
| keywords[1].id | https://openalex.org/keywords/anomaly-detection |
| keywords[1].score | 0.6503195762634277 |
| keywords[1].display_name | Anomaly detection |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6427296996116638 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/neuroevolution |
| keywords[3].score | 0.6405420899391174 |
| keywords[3].display_name | Neuroevolution |
| keywords[4].id | https://openalex.org/keywords/anomaly |
| keywords[4].score | 0.5625450015068054 |
| keywords[4].display_name | Anomaly (physics) |
| keywords[5].id | https://openalex.org/keywords/scalability |
| keywords[5].score | 0.552553117275238 |
| keywords[5].display_name | Scalability |
| keywords[6].id | https://openalex.org/keywords/univariate |
| keywords[6].score | 0.48495960235595703 |
| keywords[6].display_name | Univariate |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.38940322399139404 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.2707896828651428 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.2685457766056061 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.05720296502113342 |
| keywords[10].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/tnnls.2024.3439404 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210175523 |
| locations[0].source.issn | 2162-237X, 2162-2388 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2162-237X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| locations[0].landing_page_url | https://doi.org/10.1109/tnnls.2024.3439404 |
| locations[1].id | pmid:39141460 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on neural networks and learning systems |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39141460 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5036847074 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9357-9231 |
| authorships[0].author.display_name | Marcin Pietroń |
| authorships[0].countries | PL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I686019 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Computer Science, AGH University of Krakow, Kraków, Poland |
| authorships[0].institutions[0].id | https://openalex.org/I686019 |
| authorships[0].institutions[0].ror | https://ror.org/00bas1c41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I686019 |
| authorships[0].institutions[0].country_code | PL |
| authorships[0].institutions[0].display_name | AGH University of Krakow |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marcin Pietroń |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Computer Science, AGH University of Krakow, Kraków, Poland |
| authorships[1].author.id | https://openalex.org/A5084220744 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5329-1452 |
| authorships[1].author.display_name | Dominik Żurek |
| authorships[1].countries | PL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I686019 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Computer Science, AGH University of Krakow, Kraków, Poland |
| authorships[1].institutions[0].id | https://openalex.org/I686019 |
| authorships[1].institutions[0].ror | https://ror.org/00bas1c41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I686019 |
| authorships[1].institutions[0].country_code | PL |
| authorships[1].institutions[0].display_name | AGH University of Krakow |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dominik Żurek |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Computer Science, AGH University of Krakow, Kraków, Poland |
| authorships[2].author.id | https://openalex.org/A5008887467 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4221-0017 |
| authorships[2].author.display_name | Kamil Faber |
| authorships[2].countries | PL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I686019 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Computer Science, AGH University of Krakow, Kraków, Poland |
| authorships[2].institutions[0].id | https://openalex.org/I686019 |
| authorships[2].institutions[0].ror | https://ror.org/00bas1c41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I686019 |
| authorships[2].institutions[0].country_code | PL |
| authorships[2].institutions[0].display_name | AGH University of Krakow |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kamil Faber |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Computer Science, AGH University of Krakow, Kraków, Poland |
| authorships[3].author.id | https://openalex.org/A5010914442 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8366-6059 |
| authorships[3].author.display_name | Roberto Corizzo |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I181401687 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, American University, Washington, DC, USA |
| authorships[3].institutions[0].id | https://openalex.org/I181401687 |
| authorships[3].institutions[0].ror | https://ror.org/052w4zt36 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I181401687 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | American University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Roberto Corizzo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, American University, Washington, DC, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/tnnls.2024.3439404 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AD-NEv: A Scalable Multilevel Neuroevolution Framework for Multivariate Anomaly Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W1828158523, https://openalex.org/W2049578243, https://openalex.org/W2000145235, https://openalex.org/W2122079181, https://openalex.org/W1985848810, https://openalex.org/W2889939530, https://openalex.org/W2399195672, https://openalex.org/W3121881699, https://openalex.org/W2748838164, https://openalex.org/W2066015000 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/tnnls.2024.3439404 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210175523 |
| best_oa_location.source.issn | 2162-237X, 2162-2388 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2162-237X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tnnls.2024.3439404 |
| primary_location.id | doi:10.1109/tnnls.2024.3439404 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210175523 |
| primary_location.source.issn | 2162-237X, 2162-2388 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2162-237X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Neural Networks and Learning Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Networks and Learning Systems |
| primary_location.landing_page_url | https://doi.org/10.1109/tnnls.2024.3439404 |
| publication_date | 2024-08-14 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3040266635, https://openalex.org/W6720514713, https://openalex.org/W2965433388, https://openalex.org/W2977929929, https://openalex.org/W2950361482, https://openalex.org/W3081497074, https://openalex.org/W2950757722, https://openalex.org/W6745040976, https://openalex.org/W2963523189, https://openalex.org/W4313590336, https://openalex.org/W4378530079, https://openalex.org/W3205303036, https://openalex.org/W3155756722, https://openalex.org/W3195516695, https://openalex.org/W2963166639, https://openalex.org/W4389403158, https://openalex.org/W3169450514, https://openalex.org/W4388676625, https://openalex.org/W4392607667, https://openalex.org/W2786827964, https://openalex.org/W3198059351, https://openalex.org/W4389538721, https://openalex.org/W2111935653, https://openalex.org/W2119814172, https://openalex.org/W6734864916, https://openalex.org/W3211518947, https://openalex.org/W2122646361, https://openalex.org/W6758101687, https://openalex.org/W3198381997, https://openalex.org/W4376288669, https://openalex.org/W3184778778, https://openalex.org/W3155567600, https://openalex.org/W3152030785, https://openalex.org/W6749825310, https://openalex.org/W2962736999, https://openalex.org/W6748102297, https://openalex.org/W3161570989, https://openalex.org/W2344848374, https://openalex.org/W2886869472, https://openalex.org/W4285038805, https://openalex.org/W6796977264, https://openalex.org/W3189447831, https://openalex.org/W3135737072, https://openalex.org/W6776767859, https://openalex.org/W6780248173, https://openalex.org/W2785362611, https://openalex.org/W6680067488, https://openalex.org/W2171180835, https://openalex.org/W2407991977, https://openalex.org/W2604247107, https://openalex.org/W3199473923 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 6, 30, 34, 51, 107 |
| abstract_inverted_index.1) | 112 |
| abstract_inverted_index.2) | 125 |
| abstract_inverted_index.3) | 136 |
| abstract_inverted_index.An | 143 |
| abstract_inverted_index.In | 85 |
| abstract_inverted_index.an | 42, 117 |
| abstract_inverted_index.as | 50 |
| abstract_inverted_index.be | 41 |
| abstract_inverted_index.by | 160 |
| abstract_inverted_index.in | 9, 20 |
| abstract_inverted_index.is | 33 |
| abstract_inverted_index.of | 130, 140 |
| abstract_inverted_index.on | 72, 121, 147 |
| abstract_inverted_index.to | 47, 110 |
| abstract_inverted_index.we | 88 |
| abstract_inverted_index.The | 104 |
| abstract_inverted_index.and | 3, 12, 36, 44, 64, 82, 135 |
| abstract_inverted_index.are | 190 |
| abstract_inverted_index.can | 175 |
| abstract_inverted_index.for | 24, 29, 56, 99, 116, 167 |
| abstract_inverted_index.key | 7 |
| abstract_inverted_index.the | 17, 122, 127, 157, 177 |
| abstract_inverted_index.both | 62 |
| abstract_inverted_index.deep | 21, 164 |
| abstract_inverted_index.high | 182 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.show | 172 |
| abstract_inverted_index.that | 156, 173 |
| abstract_inverted_index.this | 48, 86 |
| abstract_inverted_index.when | 184 |
| abstract_inverted_index.based | 120 |
| abstract_inverted_index.could | 40 |
| abstract_inverted_index.focus | 71 |
| abstract_inverted_index.fully | 52 |
| abstract_inverted_index.given | 31 |
| abstract_inverted_index.model | 27, 74, 83, 119, 128 |
| abstract_inverted_index.novel | 108 |
| abstract_inverted_index.shows | 155 |
| abstract_inverted_index.tools | 2 |
| abstract_inverted_index.units | 188 |
| abstract_inverted_index.whole | 178 |
| abstract_inverted_index.work, | 87 |
| abstract_inverted_index.(GPUs) | 189 |
| abstract_inverted_index.AD-NEv | 161, 174 |
| abstract_inverted_index.method | 55, 105 |
| abstract_inverted_index.models | 158 |
| abstract_inverted_index.modern | 10 |
| abstract_inverted_index.mostly | 70 |
| abstract_inverted_index.neural | 59 |
| abstract_inverted_index.search | 54 |
| abstract_inverted_index.single | 131 |
| abstract_inverted_index.taking | 77 |
| abstract_inverted_index.widely | 148 |
| abstract_inverted_index.Anomaly | 0 |
| abstract_inverted_index.Despite | 16 |
| abstract_inverted_index.account | 79 |
| abstract_inverted_index.adopted | 149 |
| abstract_inverted_index.anomaly | 25, 90, 102, 132, 151, 168 |
| abstract_inverted_index.bagging | 123 |
| abstract_inverted_index.dataset | 32 |
| abstract_inverted_index.failure | 13 |
| abstract_inverted_index.feature | 80, 114 |
| abstract_inverted_index.methods | 4, 69 |
| abstract_inverted_index.models; | 134 |
| abstract_inverted_index.network | 141 |
| abstract_inverted_index.optimal | 58 |
| abstract_inverted_index.perform | 137, 176 |
| abstract_inverted_index.present | 5 |
| abstract_inverted_index.process | 179 |
| abstract_inverted_index.propose | 89 |
| abstract_inverted_index.results | 171 |
| abstract_inverted_index.without | 76 |
| abstract_inverted_index.However, | 67 |
| abstract_inverted_index.approach | 109 |
| abstract_inverted_index.datasets | 154 |
| abstract_inverted_index.ensemble | 118 |
| abstract_inverted_index.existing | 68 |
| abstract_inverted_index.gradient | 63 |
| abstract_inverted_index.graphics | 186 |
| abstract_inverted_index.learning | 22, 57, 165 |
| abstract_inverted_index.multiple | 185 |
| abstract_inverted_index.optimize | 113, 126 |
| abstract_inverted_index.problem, | 49 |
| abstract_inverted_index.process. | 38 |
| abstract_inverted_index.scalable | 94 |
| abstract_inverted_index.solution | 46 |
| abstract_inverted_index.systems. | 15 |
| abstract_inverted_index.weights. | 84, 142 |
| abstract_inverted_index.Moreover, | 170 |
| abstract_inverted_index.automated | 53 |
| abstract_inverted_index.benchmark | 153 |
| abstract_inverted_index.detection | 1, 91, 133, 152 |
| abstract_inverted_index.effective | 43 |
| abstract_inverted_index.efficient | 45 |
| abstract_inverted_index.extensive | 144 |
| abstract_inverted_index.extracted | 159 |
| abstract_inverted_index.framework | 98 |
| abstract_inverted_index.networks, | 60 |
| abstract_inverted_index.optimized | 96 |
| abstract_inverted_index.subspaces | 81, 115 |
| abstract_inverted_index.(AD-NEv)-a | 93 |
| abstract_inverted_index.available. | 191 |
| abstract_inverted_index.capability | 8 |
| abstract_inverted_index.cumbersome | 35 |
| abstract_inverted_index.detection, | 26 |
| abstract_inverted_index.detection. | 103, 169 |
| abstract_inverted_index.evaluation | 146 |
| abstract_inverted_index.fast-paced | 18 |
| abstract_inverted_index.multilevel | 95 |
| abstract_inverted_index.optimizing | 73 |
| abstract_inverted_index.outperform | 162 |
| abstract_inverted_index.prediction | 14 |
| abstract_inverted_index.presenting | 181 |
| abstract_inverted_index.processing | 187 |
| abstract_inverted_index.represents | 106 |
| abstract_inverted_index.supporting | 61 |
| abstract_inverted_index.technique; | 124 |
| abstract_inverted_index.well-known | 163 |
| abstract_inverted_index.development | 19 |
| abstract_inverted_index.fine-tuning | 139 |
| abstract_inverted_index.nongradient | 65, 138 |
| abstract_inverted_index.scalability | 183 |
| abstract_inverted_index.time-series | 101 |
| abstract_inverted_index.architecture | 129 |
| abstract_inverted_index.efficiently, | 180 |
| abstract_inverted_index.experimental | 145 |
| abstract_inverted_index.fine-tuning. | 66 |
| abstract_inverted_index.multivariate | 100, 150 |
| abstract_inverted_index.optimization | 28 |
| abstract_inverted_index.architectures | 23, 75, 166 |
| abstract_inverted_index.cyberphysical | 11 |
| abstract_inverted_index.synergically: | 111 |
| abstract_inverted_index.Neuroevolution | 39 |
| abstract_inverted_index.neuroevolution | 92, 97 |
| abstract_inverted_index.time-consuming | 37 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.87806592 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |