Adaptation to the slope of the amplitude spectrum in modified reality Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1167/jov.22.14.3338
Scenes contain many statistical regularities that could benefit visual processing if accounted for by the visual system. One such statistic to consider is the orientation-averaged slope of the amplitude spectrum of natural scenes. Human observers show different discrimination sensitivity ⍺ values that peak for values between 1.0 and 1.2 and fall as ⍺ is steepened or shallowed. The range of ⍺ for peak discrimination sensitivity is concordant with the average ⍺ of natural scenes, which may indicate an ideal processing range, whereby visual mechanisms are optimized to process information within a narrow range of ⍺. Here we explore the association between peak discrimination sensitivity and the most viewed ⍺s in natural environments. Specifically, we verified if discrimination sensitivity depends on the recently viewed environments. Observers were immersed, using a Head-Mounted Display, in an environment that was either unaltered or had its average ⍺ steepened or shallowed by 0.4. Discrimination thresholds were affected by the average shift in ⍺. Steeper environments decreased thresholds for steep reference ⍺s, while shallower environments decreased thresholds for shallow reference ⍺s. We modeled these data with a Bayesian observer model and explored how different priors may influence the ability of the model to fit observer thresholds. Change in discrimination thresholds following adaptation could be explained by a shift in the mode of the prior concordant with the shift in the environment, in addition to a change in the likelihood. Our findings suggest that the prior for ⍺ is associated to the ⍺ of recently viewed environments and sufficiently malleable to accommodate for different environments with different ⍺s.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1167/jov.22.14.3338
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311804907
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311804907Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1167/jov.22.14.3338Digital Object Identifier
- Title
-
Adaptation to the slope of the amplitude spectrum in modified realityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-05Full publication date if available
- Authors
-
Bruno Richard, Patrick ShaftoList of authors in order
- Landing page
-
https://doi.org/10.1167/jov.22.14.3338Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1167/jov.22.14.3338Direct OA link when available
- Concepts
-
Adaptation (eye), Sensitivity (control systems), Observer (physics), Amplitude, Prior probability, Statistic, Range (aeronautics), Artificial intelligence, Scene statistics, Computer science, Bayesian probability, Mathematics, Statistics, Pattern recognition (psychology), Psychology, Perception, Physics, Optics, Engineering, Electronic engineering, Neuroscience, Quantum mechanics, Aerospace engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311804907 |
|---|---|
| doi | https://doi.org/10.1167/jov.22.14.3338 |
| ids.doi | https://doi.org/10.1167/jov.22.14.3338 |
| ids.openalex | https://openalex.org/W4311804907 |
| fwci | 0.0 |
| type | article |
| title | Adaptation to the slope of the amplitude spectrum in modified reality |
| biblio.issue | 14 |
| biblio.volume | 22 |
| biblio.last_page | 3338 |
| biblio.first_page | 3338 |
| topics[0].id | https://openalex.org/T10427 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Visual perception and processing mechanisms |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9661999940872192 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9390000104904175 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C139807058 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6271612644195557 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[0].display_name | Adaptation (eye) |
| concepts[1].id | https://openalex.org/C21200559 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6055544018745422 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[1].display_name | Sensitivity (control systems) |
| concepts[2].id | https://openalex.org/C2780704645 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5223718285560608 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9251458 |
| concepts[2].display_name | Observer (physics) |
| concepts[3].id | https://openalex.org/C180205008 |
| concepts[3].level | 2 |
| concepts[3].score | 0.507311999797821 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q159190 |
| concepts[3].display_name | Amplitude |
| concepts[4].id | https://openalex.org/C177769412 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4774639904499054 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[4].display_name | Prior probability |
| concepts[5].id | https://openalex.org/C89128539 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47659844160079956 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1949963 |
| concepts[5].display_name | Statistic |
| concepts[6].id | https://openalex.org/C204323151 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46750932931900024 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[6].display_name | Range (aeronautics) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4560506343841553 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C197654239 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4480823874473572 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7430757 |
| concepts[8].display_name | Scene statistics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4450494647026062 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C107673813 |
| concepts[10].level | 2 |
| concepts[10].score | 0.429690420627594 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[10].display_name | Bayesian probability |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.41350120306015015 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.36956924200057983 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3425447344779968 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.20245090126991272 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C26760741 |
| concepts[15].level | 2 |
| concepts[15].score | 0.17408698797225952 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[15].display_name | Perception |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.15316617488861084 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C120665830 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1447199285030365 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[17].display_name | Optics |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.09664797782897949 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| concepts[19].id | https://openalex.org/C24326235 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[19].display_name | Electronic engineering |
| concepts[20].id | https://openalex.org/C169760540 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[20].display_name | Neuroscience |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C146978453 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[22].display_name | Aerospace engineering |
| keywords[0].id | https://openalex.org/keywords/adaptation |
| keywords[0].score | 0.6271612644195557 |
| keywords[0].display_name | Adaptation (eye) |
| keywords[1].id | https://openalex.org/keywords/sensitivity |
| keywords[1].score | 0.6055544018745422 |
| keywords[1].display_name | Sensitivity (control systems) |
| keywords[2].id | https://openalex.org/keywords/observer |
| keywords[2].score | 0.5223718285560608 |
| keywords[2].display_name | Observer (physics) |
| keywords[3].id | https://openalex.org/keywords/amplitude |
| keywords[3].score | 0.507311999797821 |
| keywords[3].display_name | Amplitude |
| keywords[4].id | https://openalex.org/keywords/prior-probability |
| keywords[4].score | 0.4774639904499054 |
| keywords[4].display_name | Prior probability |
| keywords[5].id | https://openalex.org/keywords/statistic |
| keywords[5].score | 0.47659844160079956 |
| keywords[5].display_name | Statistic |
| keywords[6].id | https://openalex.org/keywords/range |
| keywords[6].score | 0.46750932931900024 |
| keywords[6].display_name | Range (aeronautics) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4560506343841553 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/scene-statistics |
| keywords[8].score | 0.4480823874473572 |
| keywords[8].display_name | Scene statistics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.4450494647026062 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/bayesian-probability |
| keywords[10].score | 0.429690420627594 |
| keywords[10].display_name | Bayesian probability |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.41350120306015015 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.36956924200057983 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3425447344779968 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/psychology |
| keywords[14].score | 0.20245090126991272 |
| keywords[14].display_name | Psychology |
| keywords[15].id | https://openalex.org/keywords/perception |
| keywords[15].score | 0.17408698797225952 |
| keywords[15].display_name | Perception |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.15316617488861084 |
| keywords[16].display_name | Physics |
| keywords[17].id | https://openalex.org/keywords/optics |
| keywords[17].score | 0.1447199285030365 |
| keywords[17].display_name | Optics |
| keywords[18].id | https://openalex.org/keywords/engineering |
| keywords[18].score | 0.09664797782897949 |
| keywords[18].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1167/jov.22.14.3338 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S137468011 |
| locations[0].source.issn | 1534-7362 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1534-7362 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Vision |
| locations[0].source.host_organization | https://openalex.org/P4310315919 |
| locations[0].source.host_organization_name | Association for Research in Vision and Ophthalmology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315919 |
| locations[0].source.host_organization_lineage_names | Association for Research in Vision and Ophthalmology |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Vision |
| locations[0].landing_page_url | https://doi.org/10.1167/jov.22.14.3338 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5045891633 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4297-2492 |
| authorships[0].author.display_name | Bruno Richard |
| authorships[0].countries | DE, NL, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102322142, https://openalex.org/I4210096112, https://openalex.org/I4210123151 |
| authorships[0].affiliations[0].raw_affiliation_string | Rutgers University - Newark |
| authorships[0].institutions[0].id | https://openalex.org/I4210123151 |
| authorships[0].institutions[0].ror | https://ror.org/02wmkbh90 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210123151 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Rütgers (Germany) |
| authorships[0].institutions[1].id | https://openalex.org/I4210096112 |
| authorships[0].institutions[1].ror | https://ror.org/00rcvgx40 |
| authorships[0].institutions[1].type | other |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210096112 |
| authorships[0].institutions[1].country_code | NL |
| authorships[0].institutions[1].display_name | Rutgers Sexual and Reproductive Health and Rights |
| authorships[0].institutions[2].id | https://openalex.org/I102322142 |
| authorships[0].institutions[2].ror | https://ror.org/05vt9qd57 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I102322142 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Rutgers, The State University of New Jersey |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bruno Richard |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Rutgers University - Newark |
| authorships[1].author.id | https://openalex.org/A5015419380 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6506-5644 |
| authorships[1].author.display_name | Patrick Shafto |
| authorships[1].countries | DE, NL, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102322142, https://openalex.org/I4210096112, https://openalex.org/I4210123151 |
| authorships[1].affiliations[0].raw_affiliation_string | Rutgers University - Newark |
| authorships[1].institutions[0].id | https://openalex.org/I4210123151 |
| authorships[1].institutions[0].ror | https://ror.org/02wmkbh90 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210123151 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Rütgers (Germany) |
| authorships[1].institutions[1].id | https://openalex.org/I4210096112 |
| authorships[1].institutions[1].ror | https://ror.org/00rcvgx40 |
| authorships[1].institutions[1].type | other |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210096112 |
| authorships[1].institutions[1].country_code | NL |
| authorships[1].institutions[1].display_name | Rutgers Sexual and Reproductive Health and Rights |
| authorships[1].institutions[2].id | https://openalex.org/I102322142 |
| authorships[1].institutions[2].ror | https://ror.org/05vt9qd57 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I102322142 |
| authorships[1].institutions[2].country_code | US |
| authorships[1].institutions[2].display_name | Rutgers, The State University of New Jersey |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Patrick Shafto |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Rutgers University - Newark |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1167/jov.22.14.3338 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptation to the slope of the amplitude spectrum in modified reality |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10427 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Visual perception and processing mechanisms |
| related_works | https://openalex.org/W2580650124, https://openalex.org/W4386190339, https://openalex.org/W2015518264, https://openalex.org/W2135187896, https://openalex.org/W2562263695, https://openalex.org/W2147201983, https://openalex.org/W2795035211, https://openalex.org/W2160108762, https://openalex.org/W1718066205, https://openalex.org/W4407728 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1167/jov.22.14.3338 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S137468011 |
| best_oa_location.source.issn | 1534-7362 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1534-7362 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Vision |
| best_oa_location.source.host_organization | https://openalex.org/P4310315919 |
| best_oa_location.source.host_organization_name | Association for Research in Vision and Ophthalmology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315919 |
| best_oa_location.source.host_organization_lineage_names | Association for Research in Vision and Ophthalmology |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Vision |
| best_oa_location.landing_page_url | https://doi.org/10.1167/jov.22.14.3338 |
| primary_location.id | doi:10.1167/jov.22.14.3338 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S137468011 |
| primary_location.source.issn | 1534-7362 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1534-7362 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Vision |
| primary_location.source.host_organization | https://openalex.org/P4310315919 |
| primary_location.source.host_organization_name | Association for Research in Vision and Ophthalmology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315919 |
| primary_location.source.host_organization_lineage_names | Association for Research in Vision and Ophthalmology |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Vision |
| primary_location.landing_page_url | https://doi.org/10.1167/jov.22.14.3338 |
| publication_date | 2022-12-05 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 90, 128, 180, 210, 228 |
| abstract_inverted_index.We | 175 |
| abstract_inverted_index.an | 77, 132 |
| abstract_inverted_index.as | 51 |
| abstract_inverted_index.be | 207 |
| abstract_inverted_index.by | 13, 146, 152, 209 |
| abstract_inverted_index.if | 10, 115 |
| abstract_inverted_index.in | 109, 131, 156, 201, 212, 222, 225, 230 |
| abstract_inverted_index.is | 22, 53, 65, 241 |
| abstract_inverted_index.of | 26, 30, 59, 71, 93, 193, 215, 246 |
| abstract_inverted_index.on | 119 |
| abstract_inverted_index.or | 55, 138, 144 |
| abstract_inverted_index.to | 20, 86, 196, 227, 243, 253 |
| abstract_inverted_index.we | 96, 113 |
| abstract_inverted_index.1.0 | 46 |
| abstract_inverted_index.1.2 | 48 |
| abstract_inverted_index.One | 17 |
| abstract_inverted_index.Our | 233 |
| abstract_inverted_index.The | 57 |
| abstract_inverted_index.and | 47, 49, 104, 184, 250 |
| abstract_inverted_index.are | 84 |
| abstract_inverted_index.fit | 197 |
| abstract_inverted_index.for | 12, 43, 61, 162, 171, 239, 255 |
| abstract_inverted_index.had | 139 |
| abstract_inverted_index.how | 186 |
| abstract_inverted_index.its | 140 |
| abstract_inverted_index.may | 75, 189 |
| abstract_inverted_index.the | 14, 23, 27, 68, 98, 105, 120, 153, 191, 194, 213, 216, 220, 223, 231, 237, 244 |
| abstract_inverted_index.was | 135 |
| abstract_inverted_index.⍺ | 39, 52, 60, 70, 142, 240, 245 |
| abstract_inverted_index.0.4. | 147 |
| abstract_inverted_index.Here | 95 |
| abstract_inverted_index.data | 178 |
| abstract_inverted_index.fall | 50 |
| abstract_inverted_index.many | 2 |
| abstract_inverted_index.mode | 214 |
| abstract_inverted_index.most | 106 |
| abstract_inverted_index.peak | 42, 62, 101 |
| abstract_inverted_index.show | 35 |
| abstract_inverted_index.such | 18 |
| abstract_inverted_index.that | 5, 41, 134, 236 |
| abstract_inverted_index.were | 125, 150 |
| abstract_inverted_index.with | 67, 179, 219, 258 |
| abstract_inverted_index.⍺. | 94, 157 |
| abstract_inverted_index.⍺s | 108 |
| abstract_inverted_index.Human | 33 |
| abstract_inverted_index.could | 6, 206 |
| abstract_inverted_index.ideal | 78 |
| abstract_inverted_index.model | 183, 195 |
| abstract_inverted_index.prior | 217, 238 |
| abstract_inverted_index.range | 58, 92 |
| abstract_inverted_index.shift | 155, 211, 221 |
| abstract_inverted_index.slope | 25 |
| abstract_inverted_index.steep | 163 |
| abstract_inverted_index.these | 177 |
| abstract_inverted_index.using | 127 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.while | 166 |
| abstract_inverted_index.⍺s, | 165 |
| abstract_inverted_index.⍺s. | 174, 260 |
| abstract_inverted_index.Change | 200 |
| abstract_inverted_index.Scenes | 0 |
| abstract_inverted_index.change | 229 |
| abstract_inverted_index.either | 136 |
| abstract_inverted_index.narrow | 91 |
| abstract_inverted_index.priors | 188 |
| abstract_inverted_index.range, | 80 |
| abstract_inverted_index.values | 40, 44 |
| abstract_inverted_index.viewed | 107, 122, 248 |
| abstract_inverted_index.visual | 8, 15, 82 |
| abstract_inverted_index.within | 89 |
| abstract_inverted_index.Steeper | 158 |
| abstract_inverted_index.ability | 192 |
| abstract_inverted_index.average | 69, 141, 154 |
| abstract_inverted_index.benefit | 7 |
| abstract_inverted_index.between | 45, 100 |
| abstract_inverted_index.contain | 1 |
| abstract_inverted_index.depends | 118 |
| abstract_inverted_index.explore | 97 |
| abstract_inverted_index.modeled | 176 |
| abstract_inverted_index.natural | 31, 72, 110 |
| abstract_inverted_index.process | 87 |
| abstract_inverted_index.scenes, | 73 |
| abstract_inverted_index.scenes. | 32 |
| abstract_inverted_index.shallow | 172 |
| abstract_inverted_index.suggest | 235 |
| abstract_inverted_index.system. | 16 |
| abstract_inverted_index.whereby | 81 |
| abstract_inverted_index.Bayesian | 181 |
| abstract_inverted_index.Display, | 130 |
| abstract_inverted_index.addition | 226 |
| abstract_inverted_index.affected | 151 |
| abstract_inverted_index.consider | 21 |
| abstract_inverted_index.explored | 185 |
| abstract_inverted_index.findings | 234 |
| abstract_inverted_index.indicate | 76 |
| abstract_inverted_index.observer | 182, 198 |
| abstract_inverted_index.recently | 121, 247 |
| abstract_inverted_index.spectrum | 29 |
| abstract_inverted_index.verified | 114 |
| abstract_inverted_index.Observers | 124 |
| abstract_inverted_index.accounted | 11 |
| abstract_inverted_index.amplitude | 28 |
| abstract_inverted_index.decreased | 160, 169 |
| abstract_inverted_index.different | 36, 187, 256, 259 |
| abstract_inverted_index.explained | 208 |
| abstract_inverted_index.following | 204 |
| abstract_inverted_index.immersed, | 126 |
| abstract_inverted_index.influence | 190 |
| abstract_inverted_index.malleable | 252 |
| abstract_inverted_index.observers | 34 |
| abstract_inverted_index.optimized | 85 |
| abstract_inverted_index.reference | 164, 173 |
| abstract_inverted_index.shallowed | 145 |
| abstract_inverted_index.shallower | 167 |
| abstract_inverted_index.statistic | 19 |
| abstract_inverted_index.steepened | 54, 143 |
| abstract_inverted_index.unaltered | 137 |
| abstract_inverted_index.adaptation | 205 |
| abstract_inverted_index.associated | 242 |
| abstract_inverted_index.concordant | 66, 218 |
| abstract_inverted_index.mechanisms | 83 |
| abstract_inverted_index.processing | 9, 79 |
| abstract_inverted_index.shallowed. | 56 |
| abstract_inverted_index.thresholds | 149, 161, 170, 203 |
| abstract_inverted_index.accommodate | 254 |
| abstract_inverted_index.association | 99 |
| abstract_inverted_index.environment | 133 |
| abstract_inverted_index.information | 88 |
| abstract_inverted_index.likelihood. | 232 |
| abstract_inverted_index.sensitivity | 38, 64, 103, 117 |
| abstract_inverted_index.statistical | 3 |
| abstract_inverted_index.thresholds. | 199 |
| abstract_inverted_index.Head-Mounted | 129 |
| abstract_inverted_index.environment, | 224 |
| abstract_inverted_index.environments | 159, 168, 249, 257 |
| abstract_inverted_index.regularities | 4 |
| abstract_inverted_index.sufficiently | 251 |
| abstract_inverted_index.Specifically, | 112 |
| abstract_inverted_index.environments. | 111, 123 |
| abstract_inverted_index.Discrimination | 148 |
| abstract_inverted_index.discrimination | 37, 63, 102, 116, 202 |
| abstract_inverted_index.orientation-averaged | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.16677793 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |