Adapting Pretrained Text-to-Text Models for Long Text Sequences Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2023.findings-emnlp.370
We present an empirical study of adapting an existing pretrained text-to-text model for long-sequence inputs. Through a comprehensive study along three axes of the pretraining pipeline – model architecture, optimization objective, and pretraining corpus, we propose an effective recipe to build long-context models from existing short-context models. Specifically, we replace the full attention in transformers with pooling-augmented blockwise attention, and pretrain the model with a masked-span prediction task with spans of varying lengths. In terms of the pretraining corpus, we find that using randomly concatenated short-documents from a large open-domain corpus results in better performance than using existing long document corpora, which are typically limited in their domain coverage. With these findings, we build a long-context model that achieves competitive performance on long-text QA tasks and establishes the new state of the art on five long-text summarization datasets, often outperforming previous methods with larger model sizes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2023.findings-emnlp.370
- https://aclanthology.org/2023.findings-emnlp.370.pdf
- OA Status
- gold
- Cited By
- 15
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389520146
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389520146Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2023.findings-emnlp.370Digital Object Identifier
- Title
-
Adapting Pretrained Text-to-Text Models for Long Text SequencesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Wenhan Xiong, Anchit Gupta, Shubham Toshniwal, Yashar Mehdad, Scott YihList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2023.findings-emnlp.370Publisher landing page
- PDF URL
-
https://aclanthology.org/2023.findings-emnlp.370.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2023.findings-emnlp.370.pdfDirect OA link when available
- Concepts
-
Computer science, Automatic summarization, Artificial intelligence, Natural language processing, Pipeline (software), Transformer, Pooling, Context (archaeology), Language model, Text generation, Context model, Speech recognition, Task (project management), Information retrieval, Management, Programming language, Biology, Paleontology, Quantum mechanics, Voltage, Economics, Object (grammar), PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2023: 8Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389520146 |
|---|---|
| doi | https://doi.org/10.18653/v1/2023.findings-emnlp.370 |
| ids.doi | https://doi.org/10.18653/v1/2023.findings-emnlp.370 |
| ids.openalex | https://openalex.org/W4389520146 |
| fwci | 3.83164331 |
| type | article |
| title | Adapting Pretrained Text-to-Text Models for Long Text Sequences |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9872999787330627 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8717612624168396 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C170858558 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7828789949417114 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1394144 |
| concepts[1].display_name | Automatic summarization |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6535340547561646 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6370206475257874 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C43521106 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6334695816040039 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[4].display_name | Pipeline (software) |
| concepts[5].id | https://openalex.org/C66322947 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5695276856422424 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[5].display_name | Transformer |
| concepts[6].id | https://openalex.org/C70437156 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5188575983047485 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[6].display_name | Pooling |
| concepts[7].id | https://openalex.org/C2779343474 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5138416886329651 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[7].display_name | Context (archaeology) |
| concepts[8].id | https://openalex.org/C137293760 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5131335854530334 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[8].display_name | Language model |
| concepts[9].id | https://openalex.org/C2985684807 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4683645963668823 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1513879 |
| concepts[9].display_name | Text generation |
| concepts[10].id | https://openalex.org/C183322885 |
| concepts[10].level | 3 |
| concepts[10].score | 0.44815951585769653 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17007702 |
| concepts[10].display_name | Context model |
| concepts[11].id | https://openalex.org/C28490314 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4223138391971588 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[11].display_name | Speech recognition |
| concepts[12].id | https://openalex.org/C2780451532 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4110347032546997 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[12].display_name | Task (project management) |
| concepts[13].id | https://openalex.org/C23123220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.33246681094169617 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[13].display_name | Information retrieval |
| concepts[14].id | https://openalex.org/C187736073 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[14].display_name | Management |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C165801399 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[19].display_name | Voltage |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C2781238097 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[21].display_name | Object (grammar) |
| concepts[22].id | https://openalex.org/C121332964 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[22].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8717612624168396 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/automatic-summarization |
| keywords[1].score | 0.7828789949417114 |
| keywords[1].display_name | Automatic summarization |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6535340547561646 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.6370206475257874 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/pipeline |
| keywords[4].score | 0.6334695816040039 |
| keywords[4].display_name | Pipeline (software) |
| keywords[5].id | https://openalex.org/keywords/transformer |
| keywords[5].score | 0.5695276856422424 |
| keywords[5].display_name | Transformer |
| keywords[6].id | https://openalex.org/keywords/pooling |
| keywords[6].score | 0.5188575983047485 |
| keywords[6].display_name | Pooling |
| keywords[7].id | https://openalex.org/keywords/context |
| keywords[7].score | 0.5138416886329651 |
| keywords[7].display_name | Context (archaeology) |
| keywords[8].id | https://openalex.org/keywords/language-model |
| keywords[8].score | 0.5131335854530334 |
| keywords[8].display_name | Language model |
| keywords[9].id | https://openalex.org/keywords/text-generation |
| keywords[9].score | 0.4683645963668823 |
| keywords[9].display_name | Text generation |
| keywords[10].id | https://openalex.org/keywords/context-model |
| keywords[10].score | 0.44815951585769653 |
| keywords[10].display_name | Context model |
| keywords[11].id | https://openalex.org/keywords/speech-recognition |
| keywords[11].score | 0.4223138391971588 |
| keywords[11].display_name | Speech recognition |
| keywords[12].id | https://openalex.org/keywords/task |
| keywords[12].score | 0.4110347032546997 |
| keywords[12].display_name | Task (project management) |
| keywords[13].id | https://openalex.org/keywords/information-retrieval |
| keywords[13].score | 0.33246681094169617 |
| keywords[13].display_name | Information retrieval |
| language | en |
| locations[0].id | doi:10.18653/v1/2023.findings-emnlp.370 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2023.findings-emnlp.370.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2023 |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2023.findings-emnlp.370 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5110635444 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wenhan Xiong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenhan Xiong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081592288 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Anchit Gupta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anchit Gupta |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5073890145 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shubham Toshniwal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shubham Toshniwal |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5067997502 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yashar Mehdad |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yashar Mehdad |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5027596907 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Scott Yih |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Scott Yih |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2023.findings-emnlp.370.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adapting Pretrained Text-to-Text Models for Long Text Sequences |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2366403280, https://openalex.org/W1495108544, https://openalex.org/W3010337296, https://openalex.org/W4206715480, https://openalex.org/W2988673764, https://openalex.org/W2996388263, https://openalex.org/W4385890381, https://openalex.org/W2402231715, https://openalex.org/W2986367395, https://openalex.org/W4388685619 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2023.findings-emnlp.370 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2023.findings-emnlp.370.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2023 |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2023.findings-emnlp.370 |
| primary_location.id | doi:10.18653/v1/2023.findings-emnlp.370 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2023.findings-emnlp.370.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2023 |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2023.findings-emnlp.370 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3209374680, https://openalex.org/W3034999214, https://openalex.org/W2923014074, https://openalex.org/W4287667694, https://openalex.org/W3207546842, https://openalex.org/W3169942382, https://openalex.org/W3033529678, https://openalex.org/W2971034336, https://openalex.org/W3105238007, https://openalex.org/W4287692509, https://openalex.org/W4385245566, https://openalex.org/W4225727438, https://openalex.org/W2996264288, https://openalex.org/W3170490008, https://openalex.org/W3131922516, https://openalex.org/W4299567010, https://openalex.org/W3161820423, https://openalex.org/W4287824654, https://openalex.org/W4287323699, https://openalex.org/W2578338321, https://openalex.org/W3159259047, https://openalex.org/W4286750685, https://openalex.org/W3156789018, https://openalex.org/W4386566496, https://openalex.org/W2963341956, https://openalex.org/W3118781290, https://openalex.org/W3015468748, https://openalex.org/W2963748441, https://openalex.org/W4385573994, https://openalex.org/W4295838474, https://openalex.org/W2963963993, https://openalex.org/W3123615524, https://openalex.org/W4309793872, https://openalex.org/W4321340837, https://openalex.org/W3171639395, https://openalex.org/W4288089799, https://openalex.org/W4225644300, https://openalex.org/W3153603860, https://openalex.org/W3163073193, https://openalex.org/W4306672396, https://openalex.org/W4287888039, https://openalex.org/W4287704453, https://openalex.org/W4385573804, https://openalex.org/W4225958595, https://openalex.org/W4389518794, https://openalex.org/W2963926728, https://openalex.org/W4287183331, https://openalex.org/W2805206884 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 16, 64, 87, 114 |
| abstract_inverted_index.In | 73 |
| abstract_inverted_index.QA | 123 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 2, 7, 36 |
| abstract_inverted_index.in | 53, 92, 105 |
| abstract_inverted_index.of | 5, 22, 70, 75, 130 |
| abstract_inverted_index.on | 121, 133 |
| abstract_inverted_index.to | 39 |
| abstract_inverted_index.we | 34, 48, 79, 112 |
| abstract_inverted_index.and | 31, 59, 125 |
| abstract_inverted_index.are | 102 |
| abstract_inverted_index.art | 132 |
| abstract_inverted_index.for | 12 |
| abstract_inverted_index.new | 128 |
| abstract_inverted_index.the | 23, 50, 61, 76, 127, 131 |
| abstract_inverted_index.– | 26 |
| abstract_inverted_index.With | 109 |
| abstract_inverted_index.axes | 21 |
| abstract_inverted_index.find | 80 |
| abstract_inverted_index.five | 134 |
| abstract_inverted_index.from | 43, 86 |
| abstract_inverted_index.full | 51 |
| abstract_inverted_index.long | 98 |
| abstract_inverted_index.task | 67 |
| abstract_inverted_index.than | 95 |
| abstract_inverted_index.that | 81, 117 |
| abstract_inverted_index.with | 55, 63, 68, 142 |
| abstract_inverted_index.along | 19 |
| abstract_inverted_index.build | 40, 113 |
| abstract_inverted_index.large | 88 |
| abstract_inverted_index.model | 11, 27, 62, 116, 144 |
| abstract_inverted_index.often | 138 |
| abstract_inverted_index.spans | 69 |
| abstract_inverted_index.state | 129 |
| abstract_inverted_index.study | 4, 18 |
| abstract_inverted_index.tasks | 124 |
| abstract_inverted_index.terms | 74 |
| abstract_inverted_index.their | 106 |
| abstract_inverted_index.these | 110 |
| abstract_inverted_index.three | 20 |
| abstract_inverted_index.using | 82, 96 |
| abstract_inverted_index.which | 101 |
| abstract_inverted_index.better | 93 |
| abstract_inverted_index.corpus | 90 |
| abstract_inverted_index.domain | 107 |
| abstract_inverted_index.larger | 143 |
| abstract_inverted_index.models | 42 |
| abstract_inverted_index.recipe | 38 |
| abstract_inverted_index.sizes. | 145 |
| abstract_inverted_index.Through | 15 |
| abstract_inverted_index.corpus, | 33, 78 |
| abstract_inverted_index.inputs. | 14 |
| abstract_inverted_index.limited | 104 |
| abstract_inverted_index.methods | 141 |
| abstract_inverted_index.models. | 46 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.propose | 35 |
| abstract_inverted_index.replace | 49 |
| abstract_inverted_index.results | 91 |
| abstract_inverted_index.varying | 71 |
| abstract_inverted_index.achieves | 118 |
| abstract_inverted_index.adapting | 6 |
| abstract_inverted_index.corpora, | 100 |
| abstract_inverted_index.document | 99 |
| abstract_inverted_index.existing | 8, 44, 97 |
| abstract_inverted_index.lengths. | 72 |
| abstract_inverted_index.pipeline | 25 |
| abstract_inverted_index.pretrain | 60 |
| abstract_inverted_index.previous | 140 |
| abstract_inverted_index.randomly | 83 |
| abstract_inverted_index.attention | 52 |
| abstract_inverted_index.blockwise | 57 |
| abstract_inverted_index.coverage. | 108 |
| abstract_inverted_index.datasets, | 137 |
| abstract_inverted_index.effective | 37 |
| abstract_inverted_index.empirical | 3 |
| abstract_inverted_index.findings, | 111 |
| abstract_inverted_index.long-text | 122, 135 |
| abstract_inverted_index.typically | 103 |
| abstract_inverted_index.attention, | 58 |
| abstract_inverted_index.objective, | 30 |
| abstract_inverted_index.prediction | 66 |
| abstract_inverted_index.pretrained | 9 |
| abstract_inverted_index.competitive | 119 |
| abstract_inverted_index.establishes | 126 |
| abstract_inverted_index.masked-span | 65 |
| abstract_inverted_index.open-domain | 89 |
| abstract_inverted_index.performance | 94, 120 |
| abstract_inverted_index.pretraining | 24, 32, 77 |
| abstract_inverted_index.concatenated | 84 |
| abstract_inverted_index.long-context | 41, 115 |
| abstract_inverted_index.optimization | 29 |
| abstract_inverted_index.text-to-text | 10 |
| abstract_inverted_index.transformers | 54 |
| abstract_inverted_index.Specifically, | 47 |
| abstract_inverted_index.architecture, | 28 |
| abstract_inverted_index.comprehensive | 17 |
| abstract_inverted_index.long-sequence | 13 |
| abstract_inverted_index.outperforming | 139 |
| abstract_inverted_index.short-context | 45 |
| abstract_inverted_index.summarization | 136 |
| abstract_inverted_index.short-documents | 85 |
| abstract_inverted_index.pooling-augmented | 56 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.93330596 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |