Adaptive and scalable protection framework for virtual machines leveraging deep learning and dynamic defense Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-26221-8
Virtual Machines (VMs) serve as dynamic execution environments that trade-off workload isolation, performance, and elastic scalability in the cloud. However, the flexibility of VMs which allows for efficiency also makes them susceptible to stealthy and adaptive cyber threats such as resource exhaustion, privilege escalation, and lateral movement. In such environments, the traditional signature- and heuristic-based defenses often encounter difficulties, resulting in high false-positive rates and low-rank under changing attack conditions. To mitigate these limitations, we present a flexible defense system which combines feature extraction, anomaly detection, classification and mitigation in a single pipeline. The system consists of an Adaptive Feature Encoder for concise behavior representation, a Density-Aware Clustering for anomaly detection, a Transformer-Boosting Classifier for timely threat identification, and a Dynamic Mitigation Controller for prompt decision making at runtime, and with low overhead. Experiments on benchmark VM telemetry datasets (ToN-IoT and CSE-CIC-IDS2018) indicate that VMShield provides 99.8% accuracy, 99.7% precision, 99.6% F1-score, and reduces false positives by 35% compared to state-of-the-art baselines. Stress testing ensures scalability, keeping detection latency at ~ 240 ms and overhead under 7%. By integrating the accuracy with operational resilience, proposed adaptive and scalable protection framework offers a practical defense to protect the cloud-hosted VMs from the emerging adversarial threats.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-26221-8
- https://www.nature.com/articles/s41598-025-26221-8.pdf
- OA Status
- gold
- References
- 35
- OpenAlex ID
- https://openalex.org/W4416719804
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416719804Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-26221-8Digital Object Identifier
- Title
-
Adaptive and scalable protection framework for virtual machines leveraging deep learning and dynamic defenseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-26Full publication date if available
- Authors
-
C. N. S. Vinoth KumarList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-26221-8Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-26221-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-26221-8.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
35Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416719804 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-26221-8 |
| ids.doi | https://doi.org/10.1038/s41598-025-26221-8 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41298720 |
| ids.openalex | https://openalex.org/W4416719804 |
| fwci | |
| type | article |
| title | Adaptive and scalable protection framework for virtual machines leveraging deep learning and dynamic defense |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 42172 |
| biblio.first_page | 42172 |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-26221-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-26221-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-26221-8 |
| locations[1].id | pmid:41298720 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41298720 |
| locations[2].id | pmh:oai:doaj.org/article:0a635778f64f468f86cb7ed4f03b766c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-29 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/0a635778f64f468f86cb7ed4f03b766c |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5044922414 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | C. N. S. Vinoth Kumar |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Networking and Communications, School of Computing, College of Engineering and Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India |
| authorships[0].institutions[0].id | https://openalex.org/I145286018 |
| authorships[0].institutions[0].ror | https://ror.org/050113w36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | C. N. S. Vinoth Kumar |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Networking and Communications, School of Computing, College of Engineering and Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-26221-8.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-27T00:00:00 |
| display_name | Adaptive and scalable protection framework for virtual machines leveraging deep learning and dynamic defense |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T23:14:17.795251 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1038/s41598-025-26221-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-26221-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-26221-8 |
| primary_location.id | doi:10.1038/s41598-025-26221-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-26221-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-26221-8 |
| publication_date | 2025-11-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4398787751, https://openalex.org/W4404101350, https://openalex.org/W4403678609, https://openalex.org/W4410204431, https://openalex.org/W3008629209, https://openalex.org/W4403390499, https://openalex.org/W4408401193, https://openalex.org/W4408399870, https://openalex.org/W4396589020, https://openalex.org/W4402563056, https://openalex.org/W4211062436, https://openalex.org/W4408281749, https://openalex.org/W4402676280, https://openalex.org/W4383752436, https://openalex.org/W3124947971, https://openalex.org/W4407477566, https://openalex.org/W4406354446, https://openalex.org/W4394939094, https://openalex.org/W4404120897, https://openalex.org/W4375928287, https://openalex.org/W4402451295, https://openalex.org/W4390738702, https://openalex.org/W3118507196, https://openalex.org/W4390616416, https://openalex.org/W4398238465, https://openalex.org/W4390499810, https://openalex.org/W4400527390, https://openalex.org/W3117467144, https://openalex.org/W4283781733, https://openalex.org/W4392405405, https://openalex.org/W4286375445, https://openalex.org/W2976589473, https://openalex.org/W3131645226, https://openalex.org/W4409356896, https://openalex.org/W4403059096 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 76, 90, 105, 111, 119, 191 |
| abstract_inverted_index.~ | 170 |
| abstract_inverted_index.By | 177 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.VM | 136 |
| abstract_inverted_index.an | 97 |
| abstract_inverted_index.as | 4, 39 |
| abstract_inverted_index.at | 127, 169 |
| abstract_inverted_index.by | 156 |
| abstract_inverted_index.in | 16, 60, 89 |
| abstract_inverted_index.ms | 172 |
| abstract_inverted_index.of | 22, 96 |
| abstract_inverted_index.on | 134 |
| abstract_inverted_index.to | 32, 159, 194 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.240 | 171 |
| abstract_inverted_index.35% | 157 |
| abstract_inverted_index.7%. | 176 |
| abstract_inverted_index.The | 93 |
| abstract_inverted_index.VMs | 23, 198 |
| abstract_inverted_index.and | 13, 34, 44, 53, 64, 87, 118, 129, 140, 152, 173, 186 |
| abstract_inverted_index.for | 26, 101, 108, 114, 123 |
| abstract_inverted_index.low | 131 |
| abstract_inverted_index.the | 17, 20, 50, 179, 196, 200 |
| abstract_inverted_index.also | 28 |
| abstract_inverted_index.from | 199 |
| abstract_inverted_index.high | 61 |
| abstract_inverted_index.such | 38, 48 |
| abstract_inverted_index.that | 8, 143 |
| abstract_inverted_index.them | 30 |
| abstract_inverted_index.with | 130, 181 |
| abstract_inverted_index.(VMs) | 2 |
| abstract_inverted_index.99.6% | 150 |
| abstract_inverted_index.99.7% | 148 |
| abstract_inverted_index.99.8% | 146 |
| abstract_inverted_index.cyber | 36 |
| abstract_inverted_index.false | 154 |
| abstract_inverted_index.makes | 29 |
| abstract_inverted_index.often | 56 |
| abstract_inverted_index.rates | 63 |
| abstract_inverted_index.serve | 3 |
| abstract_inverted_index.these | 72 |
| abstract_inverted_index.under | 66, 175 |
| abstract_inverted_index.which | 24, 80 |
| abstract_inverted_index.Stress | 162 |
| abstract_inverted_index.allows | 25 |
| abstract_inverted_index.attack | 68 |
| abstract_inverted_index.cloud. | 18 |
| abstract_inverted_index.making | 126 |
| abstract_inverted_index.offers | 190 |
| abstract_inverted_index.prompt | 124 |
| abstract_inverted_index.single | 91 |
| abstract_inverted_index.system | 79, 94 |
| abstract_inverted_index.threat | 116 |
| abstract_inverted_index.timely | 115 |
| abstract_inverted_index.Dynamic | 120 |
| abstract_inverted_index.Encoder | 100 |
| abstract_inverted_index.Feature | 99 |
| abstract_inverted_index.Virtual | 0 |
| abstract_inverted_index.anomaly | 84, 109 |
| abstract_inverted_index.concise | 102 |
| abstract_inverted_index.defense | 78, 193 |
| abstract_inverted_index.dynamic | 5 |
| abstract_inverted_index.elastic | 14 |
| abstract_inverted_index.ensures | 164 |
| abstract_inverted_index.feature | 82 |
| abstract_inverted_index.keeping | 166 |
| abstract_inverted_index.latency | 168 |
| abstract_inverted_index.lateral | 45 |
| abstract_inverted_index.present | 75 |
| abstract_inverted_index.protect | 195 |
| abstract_inverted_index.reduces | 153 |
| abstract_inverted_index.testing | 163 |
| abstract_inverted_index.threats | 37 |
| abstract_inverted_index.(ToN-IoT | 139 |
| abstract_inverted_index.Adaptive | 98 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.Machines | 1 |
| abstract_inverted_index.VMShield | 144 |
| abstract_inverted_index.accuracy | 180 |
| abstract_inverted_index.adaptive | 35, 185 |
| abstract_inverted_index.behavior | 103 |
| abstract_inverted_index.changing | 67 |
| abstract_inverted_index.combines | 81 |
| abstract_inverted_index.compared | 158 |
| abstract_inverted_index.consists | 95 |
| abstract_inverted_index.datasets | 138 |
| abstract_inverted_index.decision | 125 |
| abstract_inverted_index.defenses | 55 |
| abstract_inverted_index.emerging | 201 |
| abstract_inverted_index.flexible | 77 |
| abstract_inverted_index.indicate | 142 |
| abstract_inverted_index.low-rank | 65 |
| abstract_inverted_index.mitigate | 71 |
| abstract_inverted_index.overhead | 174 |
| abstract_inverted_index.proposed | 184 |
| abstract_inverted_index.provides | 145 |
| abstract_inverted_index.resource | 40 |
| abstract_inverted_index.runtime, | 128 |
| abstract_inverted_index.scalable | 187 |
| abstract_inverted_index.stealthy | 33 |
| abstract_inverted_index.threats. | 203 |
| abstract_inverted_index.workload | 10 |
| abstract_inverted_index.F1-score, | 151 |
| abstract_inverted_index.accuracy, | 147 |
| abstract_inverted_index.benchmark | 135 |
| abstract_inverted_index.detection | 167 |
| abstract_inverted_index.encounter | 57 |
| abstract_inverted_index.execution | 6 |
| abstract_inverted_index.framework | 189 |
| abstract_inverted_index.movement. | 46 |
| abstract_inverted_index.overhead. | 132 |
| abstract_inverted_index.pipeline. | 92 |
| abstract_inverted_index.positives | 155 |
| abstract_inverted_index.practical | 192 |
| abstract_inverted_index.privilege | 42 |
| abstract_inverted_index.resulting | 59 |
| abstract_inverted_index.telemetry | 137 |
| abstract_inverted_index.trade-off | 9 |
| abstract_inverted_index.Classifier | 113 |
| abstract_inverted_index.Clustering | 107 |
| abstract_inverted_index.Controller | 122 |
| abstract_inverted_index.Mitigation | 121 |
| abstract_inverted_index.baselines. | 161 |
| abstract_inverted_index.detection, | 85, 110 |
| abstract_inverted_index.efficiency | 27 |
| abstract_inverted_index.isolation, | 11 |
| abstract_inverted_index.mitigation | 88 |
| abstract_inverted_index.precision, | 149 |
| abstract_inverted_index.protection | 188 |
| abstract_inverted_index.signature- | 52 |
| abstract_inverted_index.Experiments | 133 |
| abstract_inverted_index.adversarial | 202 |
| abstract_inverted_index.conditions. | 69 |
| abstract_inverted_index.escalation, | 43 |
| abstract_inverted_index.exhaustion, | 41 |
| abstract_inverted_index.extraction, | 83 |
| abstract_inverted_index.flexibility | 21 |
| abstract_inverted_index.integrating | 178 |
| abstract_inverted_index.operational | 182 |
| abstract_inverted_index.resilience, | 183 |
| abstract_inverted_index.scalability | 15 |
| abstract_inverted_index.susceptible | 31 |
| abstract_inverted_index.traditional | 51 |
| abstract_inverted_index.cloud-hosted | 197 |
| abstract_inverted_index.environments | 7 |
| abstract_inverted_index.limitations, | 73 |
| abstract_inverted_index.performance, | 12 |
| abstract_inverted_index.scalability, | 165 |
| abstract_inverted_index.Density-Aware | 106 |
| abstract_inverted_index.difficulties, | 58 |
| abstract_inverted_index.environments, | 49 |
| abstract_inverted_index.classification | 86 |
| abstract_inverted_index.false-positive | 62 |
| abstract_inverted_index.heuristic-based | 54 |
| abstract_inverted_index.identification, | 117 |
| abstract_inverted_index.representation, | 104 |
| abstract_inverted_index.CSE-CIC-IDS2018) | 141 |
| abstract_inverted_index.state-of-the-art | 160 |
| abstract_inverted_index.Transformer-Boosting | 112 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5044922414 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I145286018 |
| citation_normalized_percentile |