Adaptive Bayesian contextual hyperband: A novel hyperparameter optimization approach Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.11591/ijai.v13.i1.pp775-785
Hyperparameter tuning plays a significant role when building a machine learning or a deep learning model. The tuning process aims to find the optimal hyperparameter setting for a model or algorithm from a pre-defined search space of the hyperparameters configurations. Several tuning algorithms have been proposed in recent years and there is scope for improvement in achieving a better exploration-exploitation tradeoff of the search space. In this paper, we present a novel hyperparameter tuning algorithm named adaptive Bayesian contextual hyperband (Adaptive BCHB) that incorporates a new sampling approach to identify best regions of the search space and exploit those configurations that produce minimum validation loss by dynamically updating the threshold in every iteration. The proposed algorithm is assessed using benchmark models and datasets on traditional machine learning tasks. The proposed Adaptive BCHB algorithm shows a significant improvement in terms of accuracy and computational time for different types of hyperparameters when compared with state-of-the-art tuning algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijai.v13.i1.pp775-785
- https://ijai.iaescore.com/index.php/IJAI/article/download/24324/13881
- OA Status
- diamond
- Cited By
- 3
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390177021
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390177021Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijai.v13.i1.pp775-785Digital Object Identifier
- Title
-
Adaptive Bayesian contextual hyperband: A novel hyperparameter optimization approachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-25Full publication date if available
- Authors
-
Lakshmi Priya Swaminatha Rao, Suresh JaganathanList of authors in order
- Landing page
-
https://doi.org/10.11591/ijai.v13.i1.pp775-785Publisher landing page
- PDF URL
-
https://ijai.iaescore.com/index.php/IJAI/article/download/24324/13881Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijai.iaescore.com/index.php/IJAI/article/download/24324/13881Direct OA link when available
- Concepts
-
Hyperparameter, Computer science, Hyperparameter optimization, Bayesian optimization, Benchmark (surveying), Machine learning, Artificial intelligence, Exploit, Bayesian probability, Adaptive sampling, Algorithm, Monte Carlo method, Mathematics, Support vector machine, Geodesy, Computer security, Statistics, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390177021 |
|---|---|
| doi | https://doi.org/10.11591/ijai.v13.i1.pp775-785 |
| ids.doi | https://doi.org/10.11591/ijai.v13.i1.pp775-785 |
| ids.openalex | https://openalex.org/W4390177021 |
| fwci | 0.76632866 |
| type | article |
| title | Adaptive Bayesian contextual hyperband: A novel hyperparameter optimization approach |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 775 |
| biblio.first_page | 775 |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T12101 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Advanced Bandit Algorithms Research |
| topics[2].id | https://openalex.org/T10100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Metaheuristic Optimization Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C8642999 |
| concepts[0].level | 2 |
| concepts[0].score | 0.963685929775238 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[0].display_name | Hyperparameter |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7923010587692261 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C10485038 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7371228337287903 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q48996162 |
| concepts[2].display_name | Hyperparameter optimization |
| concepts[3].id | https://openalex.org/C2778049539 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7035178542137146 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[3].display_name | Bayesian optimization |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6821305751800537 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6517369747161865 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5517784357070923 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C165696696 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5489077568054199 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[7].display_name | Exploit |
| concepts[8].id | https://openalex.org/C107673813 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4527093768119812 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[8].display_name | Bayesian probability |
| concepts[9].id | https://openalex.org/C2781395549 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4187270998954773 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4680762 |
| concepts[9].display_name | Adaptive sampling |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3707647919654846 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C19499675 |
| concepts[11].level | 2 |
| concepts[11].score | 0.16273552179336548 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[11].display_name | Monte Carlo method |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.11231088638305664 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C12267149 |
| concepts[13].level | 2 |
| concepts[13].score | 0.07916674017906189 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[13].display_name | Support vector machine |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/hyperparameter |
| keywords[0].score | 0.963685929775238 |
| keywords[0].display_name | Hyperparameter |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7923010587692261 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/hyperparameter-optimization |
| keywords[2].score | 0.7371228337287903 |
| keywords[2].display_name | Hyperparameter optimization |
| keywords[3].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[3].score | 0.7035178542137146 |
| keywords[3].display_name | Bayesian optimization |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.6821305751800537 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.6517369747161865 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5517784357070923 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/exploit |
| keywords[7].score | 0.5489077568054199 |
| keywords[7].display_name | Exploit |
| keywords[8].id | https://openalex.org/keywords/bayesian-probability |
| keywords[8].score | 0.4527093768119812 |
| keywords[8].display_name | Bayesian probability |
| keywords[9].id | https://openalex.org/keywords/adaptive-sampling |
| keywords[9].score | 0.4187270998954773 |
| keywords[9].display_name | Adaptive sampling |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3707647919654846 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[11].score | 0.16273552179336548 |
| keywords[11].display_name | Monte Carlo method |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.11231088638305664 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/support-vector-machine |
| keywords[13].score | 0.07916674017906189 |
| keywords[13].display_name | Support vector machine |
| language | en |
| locations[0].id | doi:10.11591/ijai.v13.i1.pp775-785 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764408626 |
| locations[0].source.issn | 2089-4872, 2252-8938 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2089-4872 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IAES International Journal of Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | |
| locations[0].pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/24324/13881 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijai.v13.i1.pp775-785 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027638801 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Lakshmi Priya Swaminatha Rao |
| authorships[0].affiliations[0].raw_affiliation_string | Sri Sivasubramaniya Nadar College |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lakshmi Priya Swaminatha Rao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sri Sivasubramaniya Nadar College |
| authorships[1].author.id | https://openalex.org/A5062803012 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2971-1813 |
| authorships[1].author.display_name | Suresh Jaganathan |
| authorships[1].affiliations[0].raw_affiliation_string | Sri Sivasubramaniya Nadar College |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Suresh Jaganathan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sri Sivasubramaniya Nadar College |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijai.iaescore.com/index.php/IJAI/article/download/24324/13881 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-25T00:00:00 |
| display_name | Adaptive Bayesian contextual hyperband: A novel hyperparameter optimization approach |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W3169687406, https://openalex.org/W3206613651, https://openalex.org/W4286902601, https://openalex.org/W2200000192, https://openalex.org/W2395916875, https://openalex.org/W2405673391, https://openalex.org/W3103707007, https://openalex.org/W2906178137, https://openalex.org/W2963001956, https://openalex.org/W2782093256 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijai.v13.i1.pp775-785 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764408626 |
| best_oa_location.source.issn | 2089-4872, 2252-8938 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2089-4872 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IAES International Journal of Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/24324/13881 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijai.v13.i1.pp775-785 |
| primary_location.id | doi:10.11591/ijai.v13.i1.pp775-785 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764408626 |
| primary_location.source.issn | 2089-4872, 2252-8938 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2089-4872 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IAES International Journal of Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | |
| primary_location.pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/24324/13881 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijai.v13.i1.pp775-785 |
| publication_date | 2023-12-25 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3003877886, https://openalex.org/W3006913750, https://openalex.org/W2407212869, https://openalex.org/W4213308398, https://openalex.org/W3120397982, https://openalex.org/W3123920941, https://openalex.org/W3170647102, https://openalex.org/W3012023297, https://openalex.org/W2998993395, https://openalex.org/W3191950921, https://openalex.org/W2998788451, https://openalex.org/W3004540924, https://openalex.org/W3106064248, https://openalex.org/W2967663220, https://openalex.org/W3088365077, https://openalex.org/W2556522401, https://openalex.org/W4289763996, https://openalex.org/W3045004532, https://openalex.org/W4361022447, https://openalex.org/W2914110112, https://openalex.org/W2895917037, https://openalex.org/W2792338380, https://openalex.org/W3127180188, https://openalex.org/W2942621001, https://openalex.org/W2890014048, https://openalex.org/W4304806371, https://openalex.org/W3007667276 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 3, 8, 12, 27, 32, 57, 70, 84, 134 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.by | 105 |
| abstract_inverted_index.in | 46, 55, 110, 137 |
| abstract_inverted_index.is | 51, 116 |
| abstract_inverted_index.of | 36, 61, 92, 139, 147 |
| abstract_inverted_index.on | 123 |
| abstract_inverted_index.or | 11, 29 |
| abstract_inverted_index.to | 20, 88 |
| abstract_inverted_index.we | 68 |
| abstract_inverted_index.The | 16, 113, 128 |
| abstract_inverted_index.and | 49, 96, 121, 141 |
| abstract_inverted_index.for | 26, 53, 144 |
| abstract_inverted_index.new | 85 |
| abstract_inverted_index.the | 22, 37, 62, 93, 108 |
| abstract_inverted_index.BCHB | 131 |
| abstract_inverted_index.aims | 19 |
| abstract_inverted_index.been | 44 |
| abstract_inverted_index.best | 90 |
| abstract_inverted_index.deep | 13 |
| abstract_inverted_index.find | 21 |
| abstract_inverted_index.from | 31 |
| abstract_inverted_index.have | 43 |
| abstract_inverted_index.loss | 104 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.that | 82, 100 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.time | 143 |
| abstract_inverted_index.when | 6, 149 |
| abstract_inverted_index.with | 151 |
| abstract_inverted_index.BCHB) | 81 |
| abstract_inverted_index.every | 111 |
| abstract_inverted_index.model | 28 |
| abstract_inverted_index.named | 75 |
| abstract_inverted_index.novel | 71 |
| abstract_inverted_index.plays | 2 |
| abstract_inverted_index.scope | 52 |
| abstract_inverted_index.shows | 133 |
| abstract_inverted_index.space | 35, 95 |
| abstract_inverted_index.terms | 138 |
| abstract_inverted_index.there | 50 |
| abstract_inverted_index.those | 98 |
| abstract_inverted_index.types | 146 |
| abstract_inverted_index.using | 118 |
| abstract_inverted_index.years | 48 |
| abstract_inverted_index.better | 58 |
| abstract_inverted_index.model. | 15 |
| abstract_inverted_index.models | 120 |
| abstract_inverted_index.paper, | 67 |
| abstract_inverted_index.recent | 47 |
| abstract_inverted_index.search | 34, 63, 94 |
| abstract_inverted_index.space. | 64 |
| abstract_inverted_index.tasks. | 127 |
| abstract_inverted_index.tuning | 1, 17, 41, 73, 153 |
| abstract_inverted_index.Several | 40 |
| abstract_inverted_index.exploit | 97 |
| abstract_inverted_index.machine | 9, 125 |
| abstract_inverted_index.minimum | 102 |
| abstract_inverted_index.optimal | 23 |
| abstract_inverted_index.present | 69 |
| abstract_inverted_index.process | 18 |
| abstract_inverted_index.produce | 101 |
| abstract_inverted_index.regions | 91 |
| abstract_inverted_index.setting | 25 |
| abstract_inverted_index.Adaptive | 130 |
| abstract_inverted_index.Bayesian | 77 |
| abstract_inverted_index.accuracy | 140 |
| abstract_inverted_index.adaptive | 76 |
| abstract_inverted_index.approach | 87 |
| abstract_inverted_index.assessed | 117 |
| abstract_inverted_index.building | 7 |
| abstract_inverted_index.compared | 150 |
| abstract_inverted_index.datasets | 122 |
| abstract_inverted_index.identify | 89 |
| abstract_inverted_index.learning | 10, 14, 126 |
| abstract_inverted_index.proposed | 45, 114, 129 |
| abstract_inverted_index.sampling | 86 |
| abstract_inverted_index.tradeoff | 60 |
| abstract_inverted_index.updating | 107 |
| abstract_inverted_index.(Adaptive | 80 |
| abstract_inverted_index.achieving | 56 |
| abstract_inverted_index.algorithm | 30, 74, 115, 132 |
| abstract_inverted_index.benchmark | 119 |
| abstract_inverted_index.different | 145 |
| abstract_inverted_index.hyperband | 79 |
| abstract_inverted_index.threshold | 109 |
| abstract_inverted_index.algorithms | 42 |
| abstract_inverted_index.contextual | 78 |
| abstract_inverted_index.iteration. | 112 |
| abstract_inverted_index.validation | 103 |
| abstract_inverted_index.dynamically | 106 |
| abstract_inverted_index.improvement | 54, 136 |
| abstract_inverted_index.pre-defined | 33 |
| abstract_inverted_index.significant | 4, 135 |
| abstract_inverted_index.traditional | 124 |
| abstract_inverted_index.incorporates | 83 |
| abstract_inverted_index.computational | 142 |
| abstract_inverted_index.configurations | 99 |
| abstract_inverted_index.hyperparameter | 24, 72 |
| abstract_inverted_index.configurations. | 39 |
| abstract_inverted_index.hyperparameters | 38, 148 |
| abstract_inverted_index.state-of-the-art | 152 |
| abstract_inverted_index.algorithms.</p> | 154 |
| abstract_inverted_index.<p>Hyperparameter | 0 |
| abstract_inverted_index.exploration-exploitation | 59 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.75565204 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |