Adaptive Correlation- and Distance-Based Localization for Iterative Ensemble Smoothers in a Coupled Nonlinear Multiscale Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1175/mwr-d-24-0269.1
This paper extends the 2024 study of iterative ensemble smoothers by Evensen et al., who used a sizeable 1000-member ensemble configuration, to now using smaller, more affordable ensemble sizes with localization. As is well known, localization is needed to increase the effective ensemble size and avoid degradation of the smoother solutions by spurious correlations. As an alternative to the standard distance-based localization, we propose a reformulation of an adaptive correlation-based localization method that, in a local update, considers only those observations for which the absolute value of the correlation to the model counterpart is larger than a user-defined threshold. In the standard distance-based localization, we update model variables using only nearby observations in physical distance. In correlation-based localization, we update variables using only observations with small correlation distances. We define the correlation distance as one minus the absolute value of the ensemble correlation between a predicted measurement and the variable we are updating. Using the same formulation and implementation as in the 2024 Evensen et al. study, we compare the performance of the two localization strategies in a coupled nonlinear multiscale model and demonstrate the better or at least comparable performance of the adaptive correlation-based localization. We attribute this to an additional measurement error variance inflation for the measurements with a correlation distance close to the truncation distance, effectively leading to smoother updates. Furthermore, it solves the problem of space–time localization that is hard to solve using localization based on physical distance in ensemble smoothers over longer time windows. We also discuss strategies for the efficient implementation of the correlation-based approach.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1175/mwr-d-24-0269.1
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413328719
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413328719Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1175/mwr-d-24-0269.1Digital Object Identifier
- Title
-
Adaptive Correlation- and Distance-Based Localization for Iterative Ensemble Smoothers in a Coupled Nonlinear Multiscale ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-19Full publication date if available
- Authors
-
Femke C. Vossepoel, Geir Evensen, Peter Jan van LeeuwenList of authors in order
- Landing page
-
https://doi.org/10.1175/mwr-d-24-0269.1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1175/mwr-d-24-0269.1Direct OA link when available
- Concepts
-
Nonlinear system, Correlation, Computer science, Applied mathematics, Statistical physics, Algorithm, Meteorology, Mathematics, Physics, Geometry, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413328719 |
|---|---|
| doi | https://doi.org/10.1175/mwr-d-24-0269.1 |
| ids.doi | https://doi.org/10.1175/mwr-d-24-0269.1 |
| ids.openalex | https://openalex.org/W4413328719 |
| fwci | 0.0 |
| type | article |
| title | Adaptive Correlation- and Distance-Based Localization for Iterative Ensemble Smoothers in a Coupled Nonlinear Multiscale Model |
| biblio.issue | 11 |
| biblio.volume | 153 |
| biblio.last_page | 2609 |
| biblio.first_page | 2593 |
| topics[0].id | https://openalex.org/T11829 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.7613000273704529 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | Mathematical Biology Tumor Growth |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7190999984741211 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.6761000156402588 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158622935 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7289486527442932 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[0].display_name | Nonlinear system |
| concepts[1].id | https://openalex.org/C117220453 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4628652036190033 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[1].display_name | Correlation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4534197449684143 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C28826006 |
| concepts[3].level | 1 |
| concepts[3].score | 0.40829312801361084 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[3].display_name | Applied mathematics |
| concepts[4].id | https://openalex.org/C121864883 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40525588393211365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[4].display_name | Statistical physics |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39875689148902893 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3779609799385071 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.37751469016075134 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23937296867370605 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11258664727210999 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/nonlinear-system |
| keywords[0].score | 0.7289486527442932 |
| keywords[0].display_name | Nonlinear system |
| keywords[1].id | https://openalex.org/keywords/correlation |
| keywords[1].score | 0.4628652036190033 |
| keywords[1].display_name | Correlation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4534197449684143 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/applied-mathematics |
| keywords[3].score | 0.40829312801361084 |
| keywords[3].display_name | Applied mathematics |
| keywords[4].id | https://openalex.org/keywords/statistical-physics |
| keywords[4].score | 0.40525588393211365 |
| keywords[4].display_name | Statistical physics |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.39875689148902893 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/meteorology |
| keywords[6].score | 0.3779609799385071 |
| keywords[6].display_name | Meteorology |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.37751469016075134 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.23937296867370605 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/geometry |
| keywords[9].score | 0.11258664727210999 |
| keywords[9].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1175/mwr-d-24-0269.1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S90791864 |
| locations[0].source.issn | 0027-0644, 1520-0493 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0027-0644 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Monthly Weather Review |
| locations[0].source.host_organization | https://openalex.org/P4310320260 |
| locations[0].source.host_organization_name | American Meteorological Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320260 |
| locations[0].source.host_organization_lineage_names | American Meteorological Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Monthly Weather Review |
| locations[0].landing_page_url | https://doi.org/10.1175/mwr-d-24-0269.1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034327619 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3391-6651 |
| authorships[0].author.display_name | Femke C. Vossepoel |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I98358874 |
| authorships[0].affiliations[0].raw_affiliation_string | aDepartment of Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I98358874 |
| authorships[0].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Delft University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Femke C. Vossepoel |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | aDepartment of Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands |
| authorships[1].author.id | https://openalex.org/A5019826201 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2458-6152 |
| authorships[1].author.display_name | Geir Evensen |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210107808 |
| authorships[1].affiliations[0].raw_affiliation_string | bNorwegian Research Center (NORCE), Bergen, Norway |
| authorships[1].affiliations[1].raw_affiliation_string | cNansen Environmental and Remote Sensing Center (NERSC), Bergen, Norway |
| authorships[1].institutions[0].id | https://openalex.org/I4210107808 |
| authorships[1].institutions[0].ror | https://ror.org/02gagpf75 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210107808 |
| authorships[1].institutions[0].country_code | NO |
| authorships[1].institutions[0].display_name | NORCE Research AS |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Geir Evensen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | bNorwegian Research Center (NORCE), Bergen, Norway, cNansen Environmental and Remote Sensing Center (NERSC), Bergen, Norway |
| authorships[2].author.id | https://openalex.org/A5063378345 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2325-5340 |
| authorships[2].author.display_name | Peter Jan van Leeuwen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[2].affiliations[0].raw_affiliation_string | dDepartment of Atmospheric Sciences, Colorado State University, Fort Collins, CO, USA |
| authorships[2].institutions[0].id | https://openalex.org/I92446798 |
| authorships[2].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Colorado State University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Peter Jan van Leeuwen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | dDepartment of Atmospheric Sciences, Colorado State University, Fort Collins, CO, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1175/mwr-d-24-0269.1 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Correlation- and Distance-Based Localization for Iterative Ensemble Smoothers in a Coupled Nonlinear Multiscale Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11829 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.7613000273704529 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | Mathematical Biology Tumor Growth |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2154204858, https://openalex.org/W3209622820, https://openalex.org/W2382250648, https://openalex.org/W2364238915, https://openalex.org/W2367363545, https://openalex.org/W2586383879, https://openalex.org/W2067895158, https://openalex.org/W4379507409 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1175/mwr-d-24-0269.1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S90791864 |
| best_oa_location.source.issn | 0027-0644, 1520-0493 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0027-0644 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Monthly Weather Review |
| best_oa_location.source.host_organization | https://openalex.org/P4310320260 |
| best_oa_location.source.host_organization_name | American Meteorological Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320260 |
| best_oa_location.source.host_organization_lineage_names | American Meteorological Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Monthly Weather Review |
| best_oa_location.landing_page_url | https://doi.org/10.1175/mwr-d-24-0269.1 |
| primary_location.id | doi:10.1175/mwr-d-24-0269.1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S90791864 |
| primary_location.source.issn | 0027-0644, 1520-0493 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0027-0644 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Monthly Weather Review |
| primary_location.source.host_organization | https://openalex.org/P4310320260 |
| primary_location.source.host_organization_name | American Meteorological Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320260 |
| primary_location.source.host_organization_lineage_names | American Meteorological Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Monthly Weather Review |
| primary_location.landing_page_url | https://doi.org/10.1175/mwr-d-24-0269.1 |
| publication_date | 2025-08-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 65, 75, 97, 145, 178, 211 |
| abstract_inverted_index.As | 32, 55 |
| abstract_inverted_index.In | 100, 116 |
| abstract_inverted_index.We | 129, 197, 250 |
| abstract_inverted_index.an | 56, 68, 201 |
| abstract_inverted_index.as | 134, 160 |
| abstract_inverted_index.at | 188 |
| abstract_inverted_index.by | 11, 52 |
| abstract_inverted_index.et | 13, 165 |
| abstract_inverted_index.in | 74, 113, 161, 177, 243 |
| abstract_inverted_index.is | 33, 37, 94, 233 |
| abstract_inverted_index.it | 225 |
| abstract_inverted_index.of | 7, 48, 67, 87, 140, 172, 192, 229, 258 |
| abstract_inverted_index.on | 240 |
| abstract_inverted_index.or | 187 |
| abstract_inverted_index.to | 22, 39, 58, 90, 200, 215, 221, 235 |
| abstract_inverted_index.we | 63, 105, 119, 151, 168 |
| abstract_inverted_index.al. | 166 |
| abstract_inverted_index.and | 45, 148, 158, 183 |
| abstract_inverted_index.are | 152 |
| abstract_inverted_index.for | 82, 207, 254 |
| abstract_inverted_index.now | 23 |
| abstract_inverted_index.one | 135 |
| abstract_inverted_index.the | 4, 41, 49, 59, 84, 88, 91, 101, 131, 137, 141, 149, 155, 162, 170, 173, 185, 193, 208, 216, 227, 255, 259 |
| abstract_inverted_index.two | 174 |
| abstract_inverted_index.who | 15 |
| abstract_inverted_index.2024 | 5, 163 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.al., | 14 |
| abstract_inverted_index.also | 251 |
| abstract_inverted_index.hard | 234 |
| abstract_inverted_index.more | 26 |
| abstract_inverted_index.only | 79, 110, 123 |
| abstract_inverted_index.over | 246 |
| abstract_inverted_index.same | 156 |
| abstract_inverted_index.size | 44 |
| abstract_inverted_index.than | 96 |
| abstract_inverted_index.that | 232 |
| abstract_inverted_index.this | 199 |
| abstract_inverted_index.time | 248 |
| abstract_inverted_index.used | 16 |
| abstract_inverted_index.well | 34 |
| abstract_inverted_index.with | 30, 125, 210 |
| abstract_inverted_index.Using | 154 |
| abstract_inverted_index.avoid | 46 |
| abstract_inverted_index.based | 239 |
| abstract_inverted_index.close | 214 |
| abstract_inverted_index.error | 204 |
| abstract_inverted_index.least | 189 |
| abstract_inverted_index.local | 76 |
| abstract_inverted_index.minus | 136 |
| abstract_inverted_index.model | 92, 107, 182 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.sizes | 29 |
| abstract_inverted_index.small | 126 |
| abstract_inverted_index.solve | 236 |
| abstract_inverted_index.study | 6 |
| abstract_inverted_index.that, | 73 |
| abstract_inverted_index.those | 80 |
| abstract_inverted_index.using | 24, 109, 122, 237 |
| abstract_inverted_index.value | 86, 139 |
| abstract_inverted_index.which | 83 |
| abstract_inverted_index.better | 186 |
| abstract_inverted_index.define | 130 |
| abstract_inverted_index.known, | 35 |
| abstract_inverted_index.larger | 95 |
| abstract_inverted_index.longer | 247 |
| abstract_inverted_index.method | 72 |
| abstract_inverted_index.nearby | 111 |
| abstract_inverted_index.needed | 38 |
| abstract_inverted_index.solves | 226 |
| abstract_inverted_index.study, | 167 |
| abstract_inverted_index.update | 106, 120 |
| abstract_inverted_index.Evensen | 12, 164 |
| abstract_inverted_index.between | 144 |
| abstract_inverted_index.compare | 169 |
| abstract_inverted_index.coupled | 179 |
| abstract_inverted_index.discuss | 252 |
| abstract_inverted_index.extends | 3 |
| abstract_inverted_index.leading | 220 |
| abstract_inverted_index.problem | 228 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.update, | 77 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.absolute | 85, 138 |
| abstract_inverted_index.adaptive | 69, 194 |
| abstract_inverted_index.distance | 133, 213, 242 |
| abstract_inverted_index.ensemble | 9, 20, 28, 43, 142, 244 |
| abstract_inverted_index.increase | 40 |
| abstract_inverted_index.physical | 114, 241 |
| abstract_inverted_index.sizeable | 18 |
| abstract_inverted_index.smaller, | 25 |
| abstract_inverted_index.smoother | 50, 222 |
| abstract_inverted_index.spurious | 53 |
| abstract_inverted_index.standard | 60, 102 |
| abstract_inverted_index.updates. | 223 |
| abstract_inverted_index.variable | 150 |
| abstract_inverted_index.variance | 205 |
| abstract_inverted_index.windows. | 249 |
| abstract_inverted_index.approach. | 261 |
| abstract_inverted_index.attribute | 198 |
| abstract_inverted_index.considers | 78 |
| abstract_inverted_index.distance, | 218 |
| abstract_inverted_index.distance. | 115 |
| abstract_inverted_index.effective | 42 |
| abstract_inverted_index.efficient | 256 |
| abstract_inverted_index.inflation | 206 |
| abstract_inverted_index.iterative | 8 |
| abstract_inverted_index.nonlinear | 180 |
| abstract_inverted_index.predicted | 146 |
| abstract_inverted_index.smoothers | 10, 245 |
| abstract_inverted_index.solutions | 51 |
| abstract_inverted_index.updating. | 153 |
| abstract_inverted_index.variables | 108, 121 |
| abstract_inverted_index.additional | 202 |
| abstract_inverted_index.affordable | 27 |
| abstract_inverted_index.comparable | 190 |
| abstract_inverted_index.distances. | 128 |
| abstract_inverted_index.multiscale | 181 |
| abstract_inverted_index.strategies | 176, 253 |
| abstract_inverted_index.threshold. | 99 |
| abstract_inverted_index.truncation | 217 |
| abstract_inverted_index.1000-member | 19 |
| abstract_inverted_index.alternative | 57 |
| abstract_inverted_index.correlation | 89, 127, 132, 143, 212 |
| abstract_inverted_index.counterpart | 93 |
| abstract_inverted_index.degradation | 47 |
| abstract_inverted_index.demonstrate | 184 |
| abstract_inverted_index.effectively | 219 |
| abstract_inverted_index.formulation | 157 |
| abstract_inverted_index.measurement | 147, 203 |
| abstract_inverted_index.performance | 171, 191 |
| abstract_inverted_index.Furthermore, | 224 |
| abstract_inverted_index.localization | 36, 71, 175, 231, 238 |
| abstract_inverted_index.measurements | 209 |
| abstract_inverted_index.observations | 81, 112, 124 |
| abstract_inverted_index.space–time | 230 |
| abstract_inverted_index.user-defined | 98 |
| abstract_inverted_index.correlations. | 54 |
| abstract_inverted_index.localization, | 62, 104, 118 |
| abstract_inverted_index.localization. | 31, 196 |
| abstract_inverted_index.reformulation | 66 |
| abstract_inverted_index.configuration, | 21 |
| abstract_inverted_index.distance-based | 61, 103 |
| abstract_inverted_index.implementation | 159, 257 |
| abstract_inverted_index.correlation-based | 70, 117, 195, 260 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.40959579 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |