Adaptive Deep Supervised Autoencoder Based Image Reconstruction for Face Recognition Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1155/2016/6795352
Based on a special type of denoising autoencoder (DAE) and image reconstruction, we present a novel supervised deep learning framework for face recognition (FR). Unlike existing deep autoencoder which is unsupervised face recognition method, the proposed method takes class label information from training samples into account in the deep learning procedure and can automatically discover the underlying nonlinear manifold structures. Specifically, we define an Adaptive Deep Supervised Network Template (ADSNT) with the supervised autoencoder which is trained to extract characteristic features from corrupted/clean facial images and reconstruct the corresponding similar facial images. The reconstruction is realized by a so-called “bottleneck” neural network that learns to map face images into a low-dimensional vector and reconstruct the respective corresponding face images from the mapping vectors. Having trained the ADSNT, a new face image can then be recognized by comparing its reconstruction image with individual gallery images, respectively. Extensive experiments on three databases including AR, PubFig, and Extended Yale B demonstrate that the proposed method can significantly improve the accuracy of face recognition under enormous illumination, pose change, and a fraction of occlusion.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2016/6795352
- http://downloads.hindawi.com/journals/mpe/2016/6795352.pdf
- OA Status
- hybrid
- Cited By
- 19
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2566228241
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2566228241Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2016/6795352Digital Object Identifier
- Title
-
Adaptive Deep Supervised Autoencoder Based Image Reconstruction for Face RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Rongbing Huang, Chang Liu, Guoqi Li, Jiliu ZhouList of authors in order
- Landing page
-
https://doi.org/10.1155/2016/6795352Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/mpe/2016/6795352.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/mpe/2016/6795352.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Autoencoder, Pattern recognition (psychology), Computer science, Face (sociological concept), Deep learning, Facial recognition system, Computer vision, Image (mathematics), Artificial neural network, Iterative reconstruction, Social science, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2020: 4, 2019: 5, 2018: 4Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2566228241 |
|---|---|
| doi | https://doi.org/10.1155/2016/6795352 |
| ids.doi | https://doi.org/10.1155/2016/6795352 |
| ids.mag | 2566228241 |
| ids.openalex | https://openalex.org/W2566228241 |
| fwci | 2.00618861 |
| type | article |
| title | Adaptive Deep Supervised Autoencoder Based Image Reconstruction for Face Recognition |
| awards[0].id | https://openalex.org/G2979789370 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 13ZB0336 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G775773767 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61502059 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 2016 |
| biblio.last_page | 14 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T10828 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Biometric Identification and Security |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | USD |
| apc_list.value_usd | 2400 |
| apc_paid.value | 2400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2400 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.885759711265564 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C101738243 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8779860734939575 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[1].display_name | Autoencoder |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.709725558757782 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6531275510787964 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2779304628 |
| concepts[4].level | 2 |
| concepts[4].score | 0.643838107585907 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[4].display_name | Face (sociological concept) |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6286587715148926 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C31510193 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5801132321357727 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1192553 |
| concepts[6].display_name | Facial recognition system |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44556769728660583 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43794581294059753 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4312499165534973 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C141379421 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41009721159935 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[10].display_name | Iterative reconstruction |
| concepts[11].id | https://openalex.org/C36289849 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[11].display_name | Social science |
| concepts[12].id | https://openalex.org/C144024400 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[12].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.885759711265564 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/autoencoder |
| keywords[1].score | 0.8779860734939575 |
| keywords[1].display_name | Autoencoder |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.709725558757782 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6531275510787964 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/face |
| keywords[4].score | 0.643838107585907 |
| keywords[4].display_name | Face (sociological concept) |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.6286587715148926 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/facial-recognition-system |
| keywords[6].score | 0.5801132321357727 |
| keywords[6].display_name | Facial recognition system |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.44556769728660583 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.43794581294059753 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.4312499165534973 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[10].score | 0.41009721159935 |
| keywords[10].display_name | Iterative reconstruction |
| language | en |
| locations[0].id | doi:10.1155/2016/6795352 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S178238111 |
| locations[0].source.issn | 1024-123X, 1026-7077, 1563-5147 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1024-123X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Mathematical Problems in Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://downloads.hindawi.com/journals/mpe/2016/6795352.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematical Problems in Engineering |
| locations[0].landing_page_url | https://doi.org/10.1155/2016/6795352 |
| locations[1].id | pmh:oai:doaj.org/article:9883e2a352b94275af746a0a3b82a5c4 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematical Problems in Engineering, Vol 2016 (2016) |
| locations[1].landing_page_url | https://doaj.org/article/9883e2a352b94275af746a0a3b82a5c4 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5021383239 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3962-2881 |
| authorships[0].author.display_name | Rongbing Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210125143 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu University, Chengdu, Sichuan 610106, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Computer and Software, Sichuan University, Chengdu, Sichuan 610065, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210125143 |
| authorships[0].institutions[0].ror | https://ror.org/034z67559 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210125143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chengdu University |
| authorships[0].institutions[1].id | https://openalex.org/I24185976 |
| authorships[0].institutions[1].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rongbing Huang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu University, Chengdu, Sichuan 610106, China, School of Computer and Software, Sichuan University, Chengdu, Sichuan 610065, China |
| authorships[1].author.id | https://openalex.org/A5100353359 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3094-8153 |
| authorships[1].author.display_name | Chang Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210125143 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu University, Chengdu, Sichuan 610106, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210125143 |
| authorships[1].institutions[0].ror | https://ror.org/034z67559 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210125143 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chengdu University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chang Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu University, Chengdu, Sichuan 610106, China |
| authorships[2].author.id | https://openalex.org/A5101527399 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4454-3472 |
| authorships[2].author.display_name | Guoqi Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Reliability and System Engineering, Beihang University, Beijing 100191, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guoqi Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Reliability and System Engineering, Beihang University, Beijing 100191, China |
| authorships[3].author.id | https://openalex.org/A5102009027 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6864-9509 |
| authorships[3].author.display_name | Jiliu Zhou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer and Software, Sichuan University, Chengdu, Sichuan 610065, China |
| authorships[3].institutions[0].id | https://openalex.org/I24185976 |
| authorships[3].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sichuan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jiliu Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer and Software, Sichuan University, Chengdu, Sichuan 610065, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://downloads.hindawi.com/journals/mpe/2016/6795352.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Deep Supervised Autoencoder Based Image Reconstruction for Face Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W2159052453, https://openalex.org/W3013693939, https://openalex.org/W2566616303, https://openalex.org/W3131327266, https://openalex.org/W2752972570, https://openalex.org/W2669956259, https://openalex.org/W4249005693, https://openalex.org/W4365790226, https://openalex.org/W2098693229, https://openalex.org/W2384651879 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2017 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2016/6795352 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S178238111 |
| best_oa_location.source.issn | 1024-123X, 1026-7077, 1563-5147 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1024-123X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Mathematical Problems in Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://downloads.hindawi.com/journals/mpe/2016/6795352.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematical Problems in Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2016/6795352 |
| primary_location.id | doi:10.1155/2016/6795352 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S178238111 |
| primary_location.source.issn | 1024-123X, 1026-7077, 1563-5147 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1024-123X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Mathematical Problems in Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://downloads.hindawi.com/journals/mpe/2016/6795352.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematical Problems in Engineering |
| primary_location.landing_page_url | https://doi.org/10.1155/2016/6795352 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2146076056, https://openalex.org/W1975056068, https://openalex.org/W2062104878, https://openalex.org/W1989702938, https://openalex.org/W2054891869, https://openalex.org/W1546200464, https://openalex.org/W2100495367, https://openalex.org/W2084146405, https://openalex.org/W2136922672, https://openalex.org/W2123921160, https://openalex.org/W1484766914, https://openalex.org/W2145094598 |
| referenced_works_count | 12 |
| abstract_inverted_index.B | 156 |
| abstract_inverted_index.a | 2, 14, 97, 109, 127, 176 |
| abstract_inverted_index.an | 63 |
| abstract_inverted_index.be | 133 |
| abstract_inverted_index.by | 96, 135 |
| abstract_inverted_index.in | 46 |
| abstract_inverted_index.is | 29, 75, 94 |
| abstract_inverted_index.of | 5, 167, 178 |
| abstract_inverted_index.on | 1, 147 |
| abstract_inverted_index.to | 77, 104 |
| abstract_inverted_index.we | 12, 61 |
| abstract_inverted_index.AR, | 151 |
| abstract_inverted_index.The | 92 |
| abstract_inverted_index.and | 9, 51, 85, 112, 153, 175 |
| abstract_inverted_index.can | 52, 131, 162 |
| abstract_inverted_index.for | 20 |
| abstract_inverted_index.its | 137 |
| abstract_inverted_index.map | 105 |
| abstract_inverted_index.new | 128 |
| abstract_inverted_index.the | 34, 47, 55, 71, 87, 114, 120, 125, 159, 165 |
| abstract_inverted_index.Deep | 65 |
| abstract_inverted_index.Yale | 155 |
| abstract_inverted_index.deep | 17, 26, 48 |
| abstract_inverted_index.face | 21, 31, 106, 117, 129, 168 |
| abstract_inverted_index.from | 41, 81, 119 |
| abstract_inverted_index.into | 44, 108 |
| abstract_inverted_index.pose | 173 |
| abstract_inverted_index.that | 102, 158 |
| abstract_inverted_index.then | 132 |
| abstract_inverted_index.type | 4 |
| abstract_inverted_index.with | 70, 140 |
| abstract_inverted_index.(DAE) | 8 |
| abstract_inverted_index.(FR). | 23 |
| abstract_inverted_index.Based | 0 |
| abstract_inverted_index.class | 38 |
| abstract_inverted_index.image | 10, 130, 139 |
| abstract_inverted_index.label | 39 |
| abstract_inverted_index.novel | 15 |
| abstract_inverted_index.takes | 37 |
| abstract_inverted_index.three | 148 |
| abstract_inverted_index.under | 170 |
| abstract_inverted_index.which | 28, 74 |
| abstract_inverted_index.ADSNT, | 126 |
| abstract_inverted_index.Having | 123 |
| abstract_inverted_index.Unlike | 24 |
| abstract_inverted_index.define | 62 |
| abstract_inverted_index.facial | 83, 90 |
| abstract_inverted_index.images | 84, 107, 118 |
| abstract_inverted_index.learns | 103 |
| abstract_inverted_index.method | 36, 161 |
| abstract_inverted_index.neural | 100 |
| abstract_inverted_index.vector | 111 |
| abstract_inverted_index.(ADSNT) | 69 |
| abstract_inverted_index.Network | 67 |
| abstract_inverted_index.PubFig, | 152 |
| abstract_inverted_index.account | 45 |
| abstract_inverted_index.change, | 174 |
| abstract_inverted_index.extract | 78 |
| abstract_inverted_index.gallery | 142 |
| abstract_inverted_index.images, | 143 |
| abstract_inverted_index.images. | 91 |
| abstract_inverted_index.improve | 164 |
| abstract_inverted_index.mapping | 121 |
| abstract_inverted_index.method, | 33 |
| abstract_inverted_index.network | 101 |
| abstract_inverted_index.present | 13 |
| abstract_inverted_index.samples | 43 |
| abstract_inverted_index.similar | 89 |
| abstract_inverted_index.special | 3 |
| abstract_inverted_index.trained | 76, 124 |
| abstract_inverted_index.Adaptive | 64 |
| abstract_inverted_index.Extended | 154 |
| abstract_inverted_index.Template | 68 |
| abstract_inverted_index.accuracy | 166 |
| abstract_inverted_index.discover | 54 |
| abstract_inverted_index.enormous | 171 |
| abstract_inverted_index.existing | 25 |
| abstract_inverted_index.features | 80 |
| abstract_inverted_index.fraction | 177 |
| abstract_inverted_index.learning | 18, 49 |
| abstract_inverted_index.manifold | 58 |
| abstract_inverted_index.proposed | 35, 160 |
| abstract_inverted_index.realized | 95 |
| abstract_inverted_index.training | 42 |
| abstract_inverted_index.vectors. | 122 |
| abstract_inverted_index.Extensive | 145 |
| abstract_inverted_index.comparing | 136 |
| abstract_inverted_index.databases | 149 |
| abstract_inverted_index.denoising | 6 |
| abstract_inverted_index.framework | 19 |
| abstract_inverted_index.including | 150 |
| abstract_inverted_index.nonlinear | 57 |
| abstract_inverted_index.procedure | 50 |
| abstract_inverted_index.so-called | 98 |
| abstract_inverted_index.Supervised | 66 |
| abstract_inverted_index.individual | 141 |
| abstract_inverted_index.occlusion. | 179 |
| abstract_inverted_index.recognized | 134 |
| abstract_inverted_index.respective | 115 |
| abstract_inverted_index.supervised | 16, 72 |
| abstract_inverted_index.underlying | 56 |
| abstract_inverted_index.autoencoder | 7, 27, 73 |
| abstract_inverted_index.demonstrate | 157 |
| abstract_inverted_index.experiments | 146 |
| abstract_inverted_index.information | 40 |
| abstract_inverted_index.recognition | 22, 32, 169 |
| abstract_inverted_index.reconstruct | 86, 113 |
| abstract_inverted_index.structures. | 59 |
| abstract_inverted_index.unsupervised | 30 |
| abstract_inverted_index.Specifically, | 60 |
| abstract_inverted_index.automatically | 53 |
| abstract_inverted_index.corresponding | 88, 116 |
| abstract_inverted_index.illumination, | 172 |
| abstract_inverted_index.respectively. | 144 |
| abstract_inverted_index.significantly | 163 |
| abstract_inverted_index.characteristic | 79 |
| abstract_inverted_index.reconstruction | 93, 138 |
| abstract_inverted_index.corrupted/clean | 82 |
| abstract_inverted_index.low-dimensional | 110 |
| abstract_inverted_index.reconstruction, | 11 |
| abstract_inverted_index.“bottleneck” | 99 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5021383239 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I24185976, https://openalex.org/I4210125143 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.92025464 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |