Adaptive Drift Compensation for Soft Sensorized Finger Using Continual Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.16540
Strain sensors are gaining popularity in soft robotics for acquiring tactile data due to their flexibility and ease of integration. Tactile sensing plays a critical role in soft grippers, enabling them to safely interact with unstructured environments and precisely detect object properties. However, a significant challenge with these systems is their high non-linearity, time-varying behavior, and long-term signal drift. In this paper, we introduce a continual learning (CL) approach to model a soft finger equipped with piezoelectric-based strain sensors for proprioception. To tackle the aforementioned challenges, we propose an adaptive CL algorithm that integrates a Long Short-Term Memory (LSTM) network with a memory buffer for rehearsal and includes a regularization term to keep the model's decision boundary close to the base signal while adapting to time-varying drift. We conduct nine different experiments, resetting the entire setup each time to demonstrate signal drift. We also benchmark our algorithm against two other methods and conduct an ablation study to assess the impact of different components on the overall performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.16540
- https://arxiv.org/pdf/2503.16540
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416455376
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416455376Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.16540Digital Object Identifier
- Title
-
Adaptive Drift Compensation for Soft Sensorized Finger Using Continual LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-18Full publication date if available
- Authors
-
Nilay Kushawaha, Radan Pathan, Niccolò Pagliarani, Matteo Cianchetti, Egidio FaloticoList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.16540Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.16540Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.16540Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416455376 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.16540 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.16540 |
| ids.openalex | https://openalex.org/W4416455376 |
| fwci | |
| type | preprint |
| title | Adaptive Drift Compensation for Soft Sensorized Finger Using Continual Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.16540 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.16540 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.16540 |
| locations[1].id | doi:10.48550/arxiv.2503.16540 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.16540 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007801664 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2416-9794 |
| authorships[0].author.display_name | Nilay Kushawaha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kushawaha, Nilay |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009652657 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Radan Pathan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pathan, Radan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5068967208 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3871-0940 |
| authorships[2].author.display_name | Niccolò Pagliarani |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pagliarani, Niccolò |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025028755 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9016-8039 |
| authorships[3].author.display_name | Matteo Cianchetti |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cianchetti, Matteo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5033570527 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8060-8080 |
| authorships[4].author.display_name | Egidio Falotico |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Falotico, Egidio |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.16540 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Drift Compensation for Soft Sensorized Finger Using Continual Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T14:38:41.844634 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.16540 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.16540 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.16540 |
| primary_location.id | pmh:oai:arXiv.org:2503.16540 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.16540 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.16540 |
| publication_date | 2025-03-18 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 43, 64, 71, 94, 101, 108 |
| abstract_inverted_index.CL | 90 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.To | 81 |
| abstract_inverted_index.We | 127, 142 |
| abstract_inverted_index.an | 88, 153 |
| abstract_inverted_index.in | 5, 26 |
| abstract_inverted_index.is | 49 |
| abstract_inverted_index.of | 18, 160 |
| abstract_inverted_index.on | 163 |
| abstract_inverted_index.to | 13, 31, 69, 111, 118, 124, 138, 156 |
| abstract_inverted_index.we | 62, 86 |
| abstract_inverted_index.and | 16, 37, 55, 106, 151 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.due | 12 |
| abstract_inverted_index.for | 8, 79, 104 |
| abstract_inverted_index.our | 145 |
| abstract_inverted_index.the | 83, 113, 119, 133, 158, 164 |
| abstract_inverted_index.two | 148 |
| abstract_inverted_index.(CL) | 67 |
| abstract_inverted_index.Long | 95 |
| abstract_inverted_index.also | 143 |
| abstract_inverted_index.base | 120 |
| abstract_inverted_index.data | 11 |
| abstract_inverted_index.each | 136 |
| abstract_inverted_index.ease | 17 |
| abstract_inverted_index.high | 51 |
| abstract_inverted_index.keep | 112 |
| abstract_inverted_index.nine | 129 |
| abstract_inverted_index.role | 25 |
| abstract_inverted_index.soft | 6, 27, 72 |
| abstract_inverted_index.term | 110 |
| abstract_inverted_index.that | 92 |
| abstract_inverted_index.them | 30 |
| abstract_inverted_index.this | 60 |
| abstract_inverted_index.time | 137 |
| abstract_inverted_index.with | 34, 46, 75, 100 |
| abstract_inverted_index.close | 117 |
| abstract_inverted_index.model | 70 |
| abstract_inverted_index.other | 149 |
| abstract_inverted_index.plays | 22 |
| abstract_inverted_index.setup | 135 |
| abstract_inverted_index.study | 155 |
| abstract_inverted_index.their | 14, 50 |
| abstract_inverted_index.these | 47 |
| abstract_inverted_index.while | 122 |
| abstract_inverted_index.(LSTM) | 98 |
| abstract_inverted_index.Memory | 97 |
| abstract_inverted_index.Strain | 0 |
| abstract_inverted_index.assess | 157 |
| abstract_inverted_index.buffer | 103 |
| abstract_inverted_index.detect | 39 |
| abstract_inverted_index.drift. | 58, 126, 141 |
| abstract_inverted_index.entire | 134 |
| abstract_inverted_index.finger | 73 |
| abstract_inverted_index.impact | 159 |
| abstract_inverted_index.memory | 102 |
| abstract_inverted_index.object | 40 |
| abstract_inverted_index.paper, | 61 |
| abstract_inverted_index.safely | 32 |
| abstract_inverted_index.signal | 57, 121, 140 |
| abstract_inverted_index.strain | 77 |
| abstract_inverted_index.tackle | 82 |
| abstract_inverted_index.Tactile | 20 |
| abstract_inverted_index.against | 147 |
| abstract_inverted_index.conduct | 128, 152 |
| abstract_inverted_index.gaining | 3 |
| abstract_inverted_index.methods | 150 |
| abstract_inverted_index.model's | 114 |
| abstract_inverted_index.network | 99 |
| abstract_inverted_index.overall | 165 |
| abstract_inverted_index.propose | 87 |
| abstract_inverted_index.sensing | 21 |
| abstract_inverted_index.sensors | 1, 78 |
| abstract_inverted_index.systems | 48 |
| abstract_inverted_index.tactile | 10 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.ablation | 154 |
| abstract_inverted_index.adapting | 123 |
| abstract_inverted_index.adaptive | 89 |
| abstract_inverted_index.approach | 68 |
| abstract_inverted_index.boundary | 116 |
| abstract_inverted_index.critical | 24 |
| abstract_inverted_index.decision | 115 |
| abstract_inverted_index.enabling | 29 |
| abstract_inverted_index.equipped | 74 |
| abstract_inverted_index.includes | 107 |
| abstract_inverted_index.interact | 33 |
| abstract_inverted_index.learning | 66 |
| abstract_inverted_index.robotics | 7 |
| abstract_inverted_index.acquiring | 9 |
| abstract_inverted_index.algorithm | 91, 146 |
| abstract_inverted_index.behavior, | 54 |
| abstract_inverted_index.benchmark | 144 |
| abstract_inverted_index.challenge | 45 |
| abstract_inverted_index.continual | 65 |
| abstract_inverted_index.different | 130, 161 |
| abstract_inverted_index.grippers, | 28 |
| abstract_inverted_index.introduce | 63 |
| abstract_inverted_index.long-term | 56 |
| abstract_inverted_index.precisely | 38 |
| abstract_inverted_index.rehearsal | 105 |
| abstract_inverted_index.resetting | 132 |
| abstract_inverted_index.Short-Term | 96 |
| abstract_inverted_index.components | 162 |
| abstract_inverted_index.integrates | 93 |
| abstract_inverted_index.popularity | 4 |
| abstract_inverted_index.challenges, | 85 |
| abstract_inverted_index.demonstrate | 139 |
| abstract_inverted_index.flexibility | 15 |
| abstract_inverted_index.properties. | 41 |
| abstract_inverted_index.significant | 44 |
| abstract_inverted_index.environments | 36 |
| abstract_inverted_index.experiments, | 131 |
| abstract_inverted_index.integration. | 19 |
| abstract_inverted_index.performance. | 166 |
| abstract_inverted_index.time-varying | 53, 125 |
| abstract_inverted_index.unstructured | 35 |
| abstract_inverted_index.aforementioned | 84 |
| abstract_inverted_index.non-linearity, | 52 |
| abstract_inverted_index.regularization | 109 |
| abstract_inverted_index.proprioception. | 80 |
| abstract_inverted_index.piezoelectric-based | 76 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |