Adaptive Global-Local Context Fusion for Multi-Turn Spoken Language Understanding Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v36i11.21536
Recent years have seen significant advances in multi-turn Spoken Language Understanding (SLU), where dialogue contexts are used to guide intent classification and slot filling. However, how to selectively incorporate dialogue contexts, such as previous utterances and dialogue acts, into multi-turn SLU still remains a substantial challenge. In this work, we propose a novel contextual SLU model for multi-turn intent classification and slot filling tasks. We introduce an adaptive global-local context fusion mechanism to selectively integrate dialogue contexts into our model. The local context fusion aligns each dialogue context using multi-head attention, while the global context fusion measures overall context contribution to intent classification and slot filling tasks. Experiments show that on two benchmark datasets, our model achieves absolute F1 score improvements of 2.73% and 2.57% for the slot filling task on Sim-R and Sim M datasets, respectively. Additional experiments on a large-scale, de-identified, in-house dataset further verify the measurable accuracy gains of our proposed model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v36i11.21536
- https://ojs.aaai.org/index.php/AAAI/article/download/21536/21285
- OA Status
- diamond
- Cited By
- 5
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283812287
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283812287Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v36i11.21536Digital Object Identifier
- Title
-
Adaptive Global-Local Context Fusion for Multi-Turn Spoken Language UnderstandingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-28Full publication date if available
- Authors
-
Thanh Tran, Kai Wei, Weitong Ruan, Ross McGowan, Nathan Susanj, Grant P. StrimelList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v36i11.21536Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/21536/21285Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/21536/21285Direct OA link when available
- Concepts
-
Computer science, Context (archaeology), Benchmark (surveying), Task (project management), Artificial intelligence, Spoken language, Natural language processing, Fusion, Machine learning, Linguistics, History, Management, Geodesy, Philosophy, Archaeology, Geography, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283812287 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v36i11.21536 |
| ids.doi | https://doi.org/10.1609/aaai.v36i11.21536 |
| ids.openalex | https://openalex.org/W4283812287 |
| fwci | 0.5877752 |
| type | article |
| title | Adaptive Global-Local Context Fusion for Multi-Turn Spoken Language Understanding |
| biblio.issue | 11 |
| biblio.volume | 36 |
| biblio.last_page | 12628 |
| biblio.first_page | 12622 |
| topics[0].id | https://openalex.org/T12031 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9957000017166138 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech and dialogue systems |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9750999808311462 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10664 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9538999795913696 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7927025556564331 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.762005090713501 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7088589072227478 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6783850193023682 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5233625173568726 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2776230583 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4480913281440735 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1322198 |
| concepts[5].display_name | Spoken language |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4430927634239197 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C158525013 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4178315997123718 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[7].display_name | Fusion |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32456648349761963 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.17232701182365417 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| concepts[10].id | https://openalex.org/C95457728 |
| concepts[10].level | 0 |
| concepts[10].score | 0.05296865105628967 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[10].display_name | History |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C166957645 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[14].display_name | Archaeology |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7927025556564331 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.762005090713501 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.7088589072227478 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.6783850193023682 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5233625173568726 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/spoken-language |
| keywords[5].score | 0.4480913281440735 |
| keywords[5].display_name | Spoken language |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.4430927634239197 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/fusion |
| keywords[7].score | 0.4178315997123718 |
| keywords[7].display_name | Fusion |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.32456648349761963 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/linguistics |
| keywords[9].score | 0.17232701182365417 |
| keywords[9].display_name | Linguistics |
| keywords[10].id | https://openalex.org/keywords/history |
| keywords[10].score | 0.05296865105628967 |
| keywords[10].display_name | History |
| language | en |
| locations[0].id | doi:10.1609/aaai.v36i11.21536 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/21536/21285 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v36i11.21536 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5032785756 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8262-2414 |
| authorships[0].author.display_name | Thanh Tran |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210089985 |
| authorships[0].affiliations[0].raw_affiliation_string | Amazon |
| authorships[0].institutions[0].id | https://openalex.org/I4210089985 |
| authorships[0].institutions[0].ror | https://ror.org/00b9ktm87 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210089985 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Amazon (Germany) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thanh Tran |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Amazon |
| authorships[1].author.id | https://openalex.org/A5101693020 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7068-6114 |
| authorships[1].author.display_name | Kai Wei |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210089985 |
| authorships[1].affiliations[0].raw_affiliation_string | Amazon |
| authorships[1].institutions[0].id | https://openalex.org/I4210089985 |
| authorships[1].institutions[0].ror | https://ror.org/00b9ktm87 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210089985 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Amazon (Germany) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kai Wei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Amazon |
| authorships[2].author.id | https://openalex.org/A5101906419 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1066-513X |
| authorships[2].author.display_name | Weitong Ruan |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210089985 |
| authorships[2].affiliations[0].raw_affiliation_string | Amazon |
| authorships[2].institutions[0].id | https://openalex.org/I4210089985 |
| authorships[2].institutions[0].ror | https://ror.org/00b9ktm87 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210089985 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Amazon (Germany) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Weitong Ruan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Amazon |
| authorships[3].author.id | https://openalex.org/A5053016497 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ross McGowan |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210089985 |
| authorships[3].affiliations[0].raw_affiliation_string | Amazon |
| authorships[3].institutions[0].id | https://openalex.org/I4210089985 |
| authorships[3].institutions[0].ror | https://ror.org/00b9ktm87 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210089985 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Amazon (Germany) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ross McGowan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Amazon |
| authorships[4].author.id | https://openalex.org/A5062762746 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Nathan Susanj |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210089985 |
| authorships[4].affiliations[0].raw_affiliation_string | Amazon |
| authorships[4].institutions[0].id | https://openalex.org/I4210089985 |
| authorships[4].institutions[0].ror | https://ror.org/00b9ktm87 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210089985 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Amazon (Germany) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nathan Susanj |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Amazon |
| authorships[5].author.id | https://openalex.org/A5023708721 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Grant P. Strimel |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210089985 |
| authorships[5].affiliations[0].raw_affiliation_string | Amazon |
| authorships[5].institutions[0].id | https://openalex.org/I4210089985 |
| authorships[5].institutions[0].ror | https://ror.org/00b9ktm87 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210089985 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Amazon (Germany) |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Grant P. Strimel |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Amazon |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/21536/21285 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Global-Local Context Fusion for Multi-Turn Spoken Language Understanding |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12031 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9957000017166138 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech and dialogue systems |
| related_works | https://openalex.org/W1485630101, https://openalex.org/W2498017833, https://openalex.org/W2961085424, https://openalex.org/W112744582, https://openalex.org/W4306674287, https://openalex.org/W4224009465, https://openalex.org/W4286629047, https://openalex.org/W2983785000, https://openalex.org/W2988839259, https://openalex.org/W4288028661 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v36i11.21536 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/21536/21285 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v36i11.21536 |
| primary_location.id | doi:10.1609/aaai.v36i11.21536 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/21536/21285 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v36i11.21536 |
| publication_date | 2022-06-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6713134421, https://openalex.org/W2977830552, https://openalex.org/W6605426428, https://openalex.org/W2736272491, https://openalex.org/W1972595521, https://openalex.org/W3104113994, https://openalex.org/W2473965551, https://openalex.org/W2896457183, https://openalex.org/W2970676059, https://openalex.org/W6631190155, https://openalex.org/W2797760463, https://openalex.org/W2162455891, https://openalex.org/W3126145531, https://openalex.org/W2804780446, https://openalex.org/W2899321825, https://openalex.org/W2951299559, https://openalex.org/W648947103, https://openalex.org/W3008915885, https://openalex.org/W2953384591, https://openalex.org/W4385245566, https://openalex.org/W2952611190, https://openalex.org/W4226420874, https://openalex.org/W2784070054, https://openalex.org/W2963229292, https://openalex.org/W2092269560, https://openalex.org/W2963567240, https://openalex.org/W1549026077, https://openalex.org/W1522301498 |
| referenced_works_count | 28 |
| abstract_inverted_index.M | 134 |
| abstract_inverted_index.a | 43, 51, 140 |
| abstract_inverted_index.F1 | 118 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.We | 64 |
| abstract_inverted_index.an | 66 |
| abstract_inverted_index.as | 32 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.of | 121, 151 |
| abstract_inverted_index.on | 110, 130, 139 |
| abstract_inverted_index.to | 17, 26, 72, 100 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.SLU | 40, 54 |
| abstract_inverted_index.Sim | 133 |
| abstract_inverted_index.The | 80 |
| abstract_inverted_index.and | 21, 35, 60, 103, 123, 132 |
| abstract_inverted_index.are | 15 |
| abstract_inverted_index.for | 56, 125 |
| abstract_inverted_index.how | 25 |
| abstract_inverted_index.our | 78, 114, 152 |
| abstract_inverted_index.the | 92, 126, 147 |
| abstract_inverted_index.two | 111 |
| abstract_inverted_index.each | 85 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.into | 38, 77 |
| abstract_inverted_index.seen | 3 |
| abstract_inverted_index.show | 108 |
| abstract_inverted_index.slot | 22, 61, 104, 127 |
| abstract_inverted_index.such | 31 |
| abstract_inverted_index.task | 129 |
| abstract_inverted_index.that | 109 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.used | 16 |
| abstract_inverted_index.2.57% | 124 |
| abstract_inverted_index.2.73% | 122 |
| abstract_inverted_index.Sim-R | 131 |
| abstract_inverted_index.acts, | 37 |
| abstract_inverted_index.gains | 150 |
| abstract_inverted_index.guide | 18 |
| abstract_inverted_index.local | 81 |
| abstract_inverted_index.model | 55, 115 |
| abstract_inverted_index.novel | 52 |
| abstract_inverted_index.score | 119 |
| abstract_inverted_index.still | 41 |
| abstract_inverted_index.using | 88 |
| abstract_inverted_index.where | 12 |
| abstract_inverted_index.while | 91 |
| abstract_inverted_index.work, | 48 |
| abstract_inverted_index.years | 1 |
| abstract_inverted_index.(SLU), | 11 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.Spoken | 8 |
| abstract_inverted_index.aligns | 84 |
| abstract_inverted_index.fusion | 70, 83, 95 |
| abstract_inverted_index.global | 93 |
| abstract_inverted_index.intent | 19, 58, 101 |
| abstract_inverted_index.model. | 79, 154 |
| abstract_inverted_index.tasks. | 63, 106 |
| abstract_inverted_index.verify | 146 |
| abstract_inverted_index.context | 69, 82, 87, 94, 98 |
| abstract_inverted_index.dataset | 144 |
| abstract_inverted_index.filling | 62, 105, 128 |
| abstract_inverted_index.further | 145 |
| abstract_inverted_index.overall | 97 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.remains | 42 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.Language | 9 |
| abstract_inverted_index.absolute | 117 |
| abstract_inverted_index.accuracy | 149 |
| abstract_inverted_index.achieves | 116 |
| abstract_inverted_index.adaptive | 67 |
| abstract_inverted_index.advances | 5 |
| abstract_inverted_index.contexts | 14, 76 |
| abstract_inverted_index.dialogue | 13, 29, 36, 75, 86 |
| abstract_inverted_index.filling. | 23 |
| abstract_inverted_index.in-house | 143 |
| abstract_inverted_index.measures | 96 |
| abstract_inverted_index.previous | 33 |
| abstract_inverted_index.proposed | 153 |
| abstract_inverted_index.benchmark | 112 |
| abstract_inverted_index.contexts, | 30 |
| abstract_inverted_index.datasets, | 113, 135 |
| abstract_inverted_index.integrate | 74 |
| abstract_inverted_index.introduce | 65 |
| abstract_inverted_index.mechanism | 71 |
| abstract_inverted_index.Additional | 137 |
| abstract_inverted_index.attention, | 90 |
| abstract_inverted_index.challenge. | 45 |
| abstract_inverted_index.contextual | 53 |
| abstract_inverted_index.measurable | 148 |
| abstract_inverted_index.multi-head | 89 |
| abstract_inverted_index.multi-turn | 7, 39, 57 |
| abstract_inverted_index.utterances | 34 |
| abstract_inverted_index.Experiments | 107 |
| abstract_inverted_index.experiments | 138 |
| abstract_inverted_index.incorporate | 28 |
| abstract_inverted_index.selectively | 27, 73 |
| abstract_inverted_index.significant | 4 |
| abstract_inverted_index.substantial | 44 |
| abstract_inverted_index.contribution | 99 |
| abstract_inverted_index.global-local | 68 |
| abstract_inverted_index.improvements | 120 |
| abstract_inverted_index.large-scale, | 141 |
| abstract_inverted_index.Understanding | 10 |
| abstract_inverted_index.respectively. | 136 |
| abstract_inverted_index.classification | 20, 59, 102 |
| abstract_inverted_index.de-identified, | 142 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.62951385 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |