Adaptive Incremental Genetic Algorithm for Task Scheduling in Cloud Environments Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.3390/sym10050168
Cloud computing is a new commercial model that enables customers to acquire large amounts of virtual resources on demand. Resources including hardware and software can be delivered as services and measured by specific usage of storage, processing, bandwidth, etc. In Cloud computing, task scheduling is a process of mapping cloud tasks to Virtual Machines (VMs). When binding the tasks to VMs, the scheduling strategy has an important influence on the efficiency of datacenter and related energy consumption. Although many traditional scheduling algorithms have been applied in various platforms, they may not work efficiently due to the large number of user requests, the variety of computation resources and complexity of Cloud environment. In this paper, we tackle the task scheduling problem which aims to minimize makespan by Genetic Algorithm (GA). We propose an incremental GA which has adaptive probabilities of crossover and mutation. The mutation and crossover rates change according to generations and also vary between individuals. Large numbers of tasks are randomly generated to simulate various scales of task scheduling problem in Cloud environment. Based on the instance types of Amazon EC2, we implemented virtual machines with different computing capacity on CloudSim. We compared the performance of the adaptive incremental GA with that of Standard GA, Min-Min, Max-Min , Simulated Annealing and Artificial Bee Colony Algorithm in finding the optimal scheme. Experimental results show that the proposed algorithm can achieve feasible solutions which have acceptable makespan with less computation time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/sym10050168
- https://www.mdpi.com/2073-8994/10/5/168/pdf?version=1526551220
- OA Status
- gold
- Cited By
- 42
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2803521530
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2803521530Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/sym10050168Digital Object Identifier
- Title
-
Adaptive Incremental Genetic Algorithm for Task Scheduling in Cloud EnvironmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-05-17Full publication date if available
- Authors
-
Kairong Duan, Simon Fong, Shirley W. I. Siu, Wei Song, Sheng-Uei GuanList of authors in order
- Landing page
-
https://doi.org/10.3390/sym10050168Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-8994/10/5/168/pdf?version=1526551220Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-8994/10/5/168/pdf?version=1526551220Direct OA link when available
- Concepts
-
Computer science, Cloud computing, Virtual machine, CloudSim, Crossover, Distributed computing, Job shop scheduling, Scheduling (production processes), Genetic algorithm, Load balancing (electrical power), Dynamic priority scheduling, Computation, Real-time computing, Algorithm, Mathematical optimization, Artificial intelligence, Embedded system, Operating system, Computer network, Quality of service, Machine learning, Mathematics, Geometry, Grid, Routing (electronic design automation)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
42Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 3, 2023: 8, 2022: 3, 2021: 6Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2803521530 |
|---|---|
| doi | https://doi.org/10.3390/sym10050168 |
| ids.doi | https://doi.org/10.3390/sym10050168 |
| ids.mag | 2803521530 |
| ids.openalex | https://openalex.org/W2803521530 |
| fwci | 8.48335795 |
| type | article |
| title | Adaptive Incremental Genetic Algorithm for Task Scheduling in Cloud Environments |
| awards[0].id | https://openalex.org/G1280151741 |
| awards[0].funder_id | https://openalex.org/F4320323893 |
| awards[0].display_name | |
| awards[0].funder_award_id | FDCT/126/2014/A3 |
| awards[0].funder_display_name | Fundo para o Desenvolvimento das Ciências e da Tecnologia |
| awards[1].id | https://openalex.org/G6621187252 |
| awards[1].funder_id | https://openalex.org/F4320322841 |
| awards[1].display_name | |
| awards[1].funder_award_id | MYRG2016-00069-FST |
| awards[1].funder_display_name | Universidade de Macau |
| awards[2].id | https://openalex.org/G8203657292 |
| awards[2].funder_id | https://openalex.org/F4320322841 |
| awards[2].display_name | |
| awards[2].funder_award_id | MYRG2016-00217-FST |
| awards[2].funder_display_name | Universidade de Macau |
| biblio.issue | 5 |
| biblio.volume | 10 |
| biblio.last_page | 168 |
| biblio.first_page | 168 |
| topics[0].id | https://openalex.org/T10101 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Cloud Computing and Resource Management |
| topics[1].id | https://openalex.org/T10273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | IoT and Edge/Fog Computing |
| topics[2].id | https://openalex.org/T10715 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed and Parallel Computing Systems |
| funders[0].id | https://openalex.org/F4320322841 |
| funders[0].ror | https://ror.org/01r4q9n85 |
| funders[0].display_name | Universidade de Macau |
| funders[1].id | https://openalex.org/F4320323893 |
| funders[1].ror | https://ror.org/05vna4324 |
| funders[1].display_name | Fundo para o Desenvolvimento das Ciências e da Tecnologia |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8474010825157166 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C79974875 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7716422080993652 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[1].display_name | Cloud computing |
| concepts[2].id | https://openalex.org/C25344961 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7384626865386963 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192726 |
| concepts[2].display_name | Virtual machine |
| concepts[3].id | https://openalex.org/C2779907789 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7379059791564941 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q22095616 |
| concepts[3].display_name | CloudSim |
| concepts[4].id | https://openalex.org/C122507166 |
| concepts[4].level | 2 |
| concepts[4].score | 0.7123078107833862 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q628906 |
| concepts[4].display_name | Crossover |
| concepts[5].id | https://openalex.org/C120314980 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6775438189506531 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[5].display_name | Distributed computing |
| concepts[6].id | https://openalex.org/C55416958 |
| concepts[6].level | 3 |
| concepts[6].score | 0.6468437314033508 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6206757 |
| concepts[6].display_name | Job shop scheduling |
| concepts[7].id | https://openalex.org/C206729178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5973383784294128 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[7].display_name | Scheduling (production processes) |
| concepts[8].id | https://openalex.org/C8880873 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4456784427165985 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[8].display_name | Genetic algorithm |
| concepts[9].id | https://openalex.org/C138959212 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4447154998779297 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1806783 |
| concepts[9].display_name | Load balancing (electrical power) |
| concepts[10].id | https://openalex.org/C107568181 |
| concepts[10].level | 3 |
| concepts[10].score | 0.44167983531951904 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5319000 |
| concepts[10].display_name | Dynamic priority scheduling |
| concepts[11].id | https://openalex.org/C45374587 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4321069121360779 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[11].display_name | Computation |
| concepts[12].id | https://openalex.org/C79403827 |
| concepts[12].level | 1 |
| concepts[12].score | 0.39271795749664307 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[12].display_name | Real-time computing |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3496498465538025 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C126255220 |
| concepts[14].level | 1 |
| concepts[14].score | 0.29738447070121765 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[14].display_name | Mathematical optimization |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.13990238308906555 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C149635348 |
| concepts[16].level | 1 |
| concepts[16].score | 0.13423314690589905 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[16].display_name | Embedded system |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.12937211990356445 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C31258907 |
| concepts[18].level | 1 |
| concepts[18].score | 0.09956946969032288 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[18].display_name | Computer network |
| concepts[19].id | https://openalex.org/C5119721 |
| concepts[19].level | 2 |
| concepts[19].score | 0.09599187970161438 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[19].display_name | Quality of service |
| concepts[20].id | https://openalex.org/C119857082 |
| concepts[20].level | 1 |
| concepts[20].score | 0.09397858381271362 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[20].display_name | Machine learning |
| concepts[21].id | https://openalex.org/C33923547 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[21].display_name | Mathematics |
| concepts[22].id | https://openalex.org/C2524010 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[22].display_name | Geometry |
| concepts[23].id | https://openalex.org/C187691185 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[23].display_name | Grid |
| concepts[24].id | https://openalex.org/C74172769 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1446839 |
| concepts[24].display_name | Routing (electronic design automation) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8474010825157166 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/cloud-computing |
| keywords[1].score | 0.7716422080993652 |
| keywords[1].display_name | Cloud computing |
| keywords[2].id | https://openalex.org/keywords/virtual-machine |
| keywords[2].score | 0.7384626865386963 |
| keywords[2].display_name | Virtual machine |
| keywords[3].id | https://openalex.org/keywords/cloudsim |
| keywords[3].score | 0.7379059791564941 |
| keywords[3].display_name | CloudSim |
| keywords[4].id | https://openalex.org/keywords/crossover |
| keywords[4].score | 0.7123078107833862 |
| keywords[4].display_name | Crossover |
| keywords[5].id | https://openalex.org/keywords/distributed-computing |
| keywords[5].score | 0.6775438189506531 |
| keywords[5].display_name | Distributed computing |
| keywords[6].id | https://openalex.org/keywords/job-shop-scheduling |
| keywords[6].score | 0.6468437314033508 |
| keywords[6].display_name | Job shop scheduling |
| keywords[7].id | https://openalex.org/keywords/scheduling |
| keywords[7].score | 0.5973383784294128 |
| keywords[7].display_name | Scheduling (production processes) |
| keywords[8].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[8].score | 0.4456784427165985 |
| keywords[8].display_name | Genetic algorithm |
| keywords[9].id | https://openalex.org/keywords/load-balancing |
| keywords[9].score | 0.4447154998779297 |
| keywords[9].display_name | Load balancing (electrical power) |
| keywords[10].id | https://openalex.org/keywords/dynamic-priority-scheduling |
| keywords[10].score | 0.44167983531951904 |
| keywords[10].display_name | Dynamic priority scheduling |
| keywords[11].id | https://openalex.org/keywords/computation |
| keywords[11].score | 0.4321069121360779 |
| keywords[11].display_name | Computation |
| keywords[12].id | https://openalex.org/keywords/real-time-computing |
| keywords[12].score | 0.39271795749664307 |
| keywords[12].display_name | Real-time computing |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.3496498465538025 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[14].score | 0.29738447070121765 |
| keywords[14].display_name | Mathematical optimization |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.13990238308906555 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/embedded-system |
| keywords[16].score | 0.13423314690589905 |
| keywords[16].display_name | Embedded system |
| keywords[17].id | https://openalex.org/keywords/operating-system |
| keywords[17].score | 0.12937211990356445 |
| keywords[17].display_name | Operating system |
| keywords[18].id | https://openalex.org/keywords/computer-network |
| keywords[18].score | 0.09956946969032288 |
| keywords[18].display_name | Computer network |
| keywords[19].id | https://openalex.org/keywords/quality-of-service |
| keywords[19].score | 0.09599187970161438 |
| keywords[19].display_name | Quality of service |
| keywords[20].id | https://openalex.org/keywords/machine-learning |
| keywords[20].score | 0.09397858381271362 |
| keywords[20].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/sym10050168 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190787756 |
| locations[0].source.issn | 2073-8994 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-8994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Symmetry |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-8994/10/5/168/pdf?version=1526551220 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Symmetry |
| locations[0].landing_page_url | https://doi.org/10.3390/sym10050168 |
| locations[1].id | pmh:oai:doaj.org/article:2e0cc2058694458c9e7ee5362e5a49ee |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Symmetry, Vol 10, Iss 5, p 168 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/2e0cc2058694458c9e7ee5362e5a49ee |
| locations[2].id | pmh:oai:mdpi.com:/2073-8994/10/5/168/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Symmetry |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/sym10050168 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5063588331 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1375-1826 |
| authorships[0].author.display_name | Kairong Duan |
| authorships[0].countries | MO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[0].institutions[0].id | https://openalex.org/I204512498 |
| authorships[0].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[0].institutions[0].country_code | MO |
| authorships[0].institutions[0].display_name | University of Macau |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kairong Duan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[1].author.id | https://openalex.org/A5086422507 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1848-7246 |
| authorships[1].author.display_name | Simon Fong |
| authorships[1].countries | MO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[1].institutions[0].id | https://openalex.org/I204512498 |
| authorships[1].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[1].institutions[0].country_code | MO |
| authorships[1].institutions[0].display_name | University of Macau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Simon Fong |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[2].author.id | https://openalex.org/A5102848446 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3695-7758 |
| authorships[2].author.display_name | Shirley W. I. Siu |
| authorships[2].countries | MO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[2].institutions[0].id | https://openalex.org/I204512498 |
| authorships[2].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[2].institutions[0].country_code | MO |
| authorships[2].institutions[0].display_name | University of Macau |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shirley W. I. Siu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[3].author.id | https://openalex.org/A5067090170 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5909-9661 |
| authorships[3].author.display_name | Wei Song |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1456306 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science, North China University of Technology, Beijing 100144, China |
| authorships[3].institutions[0].id | https://openalex.org/I1456306 |
| authorships[3].institutions[0].ror | https://ror.org/01nky7652 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1456306 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | North China University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wei Song |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science, North China University of Technology, Beijing 100144, China |
| authorships[4].author.id | https://openalex.org/A5065827089 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3968-9752 |
| authorships[4].author.display_name | Sheng-Uei Guan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China |
| authorships[4].institutions[0].id | https://openalex.org/I69356397 |
| authorships[4].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Steven Sheng-Uei Guan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-8994/10/5/168/pdf?version=1526551220 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Incremental Genetic Algorithm for Task Scheduling in Cloud Environments |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10101 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Cloud Computing and Resource Management |
| related_works | https://openalex.org/W3012503605, https://openalex.org/W3046706980, https://openalex.org/W4230391450, https://openalex.org/W3127792554, https://openalex.org/W149786246, https://openalex.org/W2074119154, https://openalex.org/W2186607480, https://openalex.org/W3199056070, https://openalex.org/W3006629403, https://openalex.org/W4286215631 |
| cited_by_count | 42 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 6 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 9 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 3 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/sym10050168 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190787756 |
| best_oa_location.source.issn | 2073-8994 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-8994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Symmetry |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-8994/10/5/168/pdf?version=1526551220 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Symmetry |
| best_oa_location.landing_page_url | https://doi.org/10.3390/sym10050168 |
| primary_location.id | doi:10.3390/sym10050168 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190787756 |
| primary_location.source.issn | 2073-8994 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-8994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Symmetry |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-8994/10/5/168/pdf?version=1526551220 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Symmetry |
| primary_location.landing_page_url | https://doi.org/10.3390/sym10050168 |
| publication_date | 2018-05-17 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2774665406, https://openalex.org/W2734413197, https://openalex.org/W2745624043, https://openalex.org/W2605481094, https://openalex.org/W4239554732, https://openalex.org/W2135938932, https://openalex.org/W146993857, https://openalex.org/W6703982435, https://openalex.org/W2035978754, https://openalex.org/W2023070290, https://openalex.org/W6676513175, https://openalex.org/W2082759946, https://openalex.org/W2062671376, https://openalex.org/W2604575217, https://openalex.org/W2143560894, https://openalex.org/W2289873658, https://openalex.org/W2554726407, https://openalex.org/W2104361858, https://openalex.org/W2549087245, https://openalex.org/W2331349420, https://openalex.org/W2064981533, https://openalex.org/W2467620307, https://openalex.org/W1561941375, https://openalex.org/W1990771923, https://openalex.org/W2338645986 |
| referenced_works_count | 25 |
| abstract_inverted_index., | 208 |
| abstract_inverted_index.a | 3, 45 |
| abstract_inverted_index.GA | 133, 200 |
| abstract_inverted_index.In | 39, 111 |
| abstract_inverted_index.We | 129, 192 |
| abstract_inverted_index.an | 65, 131 |
| abstract_inverted_index.as | 27 |
| abstract_inverted_index.be | 25 |
| abstract_inverted_index.by | 31, 125 |
| abstract_inverted_index.in | 85, 171, 216 |
| abstract_inverted_index.is | 2, 44 |
| abstract_inverted_index.of | 14, 34, 47, 71, 98, 103, 108, 138, 158, 167, 179, 196, 203 |
| abstract_inverted_index.on | 17, 68, 175, 190 |
| abstract_inverted_index.to | 10, 51, 59, 94, 122, 149, 163 |
| abstract_inverted_index.we | 114, 182 |
| abstract_inverted_index.Bee | 213 |
| abstract_inverted_index.GA, | 205 |
| abstract_inverted_index.The | 142 |
| abstract_inverted_index.and | 22, 29, 73, 106, 140, 144, 151, 211 |
| abstract_inverted_index.are | 160 |
| abstract_inverted_index.can | 24, 228 |
| abstract_inverted_index.due | 93 |
| abstract_inverted_index.has | 64, 135 |
| abstract_inverted_index.may | 89 |
| abstract_inverted_index.new | 4 |
| abstract_inverted_index.not | 90 |
| abstract_inverted_index.the | 57, 61, 69, 95, 101, 116, 176, 194, 197, 218, 225 |
| abstract_inverted_index.EC2, | 181 |
| abstract_inverted_index.VMs, | 60 |
| abstract_inverted_index.When | 55 |
| abstract_inverted_index.aims | 121 |
| abstract_inverted_index.also | 152 |
| abstract_inverted_index.been | 83 |
| abstract_inverted_index.etc. | 38 |
| abstract_inverted_index.have | 82, 233 |
| abstract_inverted_index.less | 237 |
| abstract_inverted_index.many | 78 |
| abstract_inverted_index.show | 223 |
| abstract_inverted_index.task | 42, 117, 168 |
| abstract_inverted_index.that | 7, 202, 224 |
| abstract_inverted_index.they | 88 |
| abstract_inverted_index.this | 112 |
| abstract_inverted_index.user | 99 |
| abstract_inverted_index.vary | 153 |
| abstract_inverted_index.with | 186, 201, 236 |
| abstract_inverted_index.work | 91 |
| abstract_inverted_index.(GA). | 128 |
| abstract_inverted_index.Based | 174 |
| abstract_inverted_index.Cloud | 0, 40, 109, 172 |
| abstract_inverted_index.Large | 156 |
| abstract_inverted_index.cloud | 49 |
| abstract_inverted_index.large | 12, 96 |
| abstract_inverted_index.model | 6 |
| abstract_inverted_index.rates | 146 |
| abstract_inverted_index.tasks | 50, 58, 159 |
| abstract_inverted_index.time. | 239 |
| abstract_inverted_index.types | 178 |
| abstract_inverted_index.usage | 33 |
| abstract_inverted_index.which | 120, 134, 232 |
| abstract_inverted_index.(VMs). | 54 |
| abstract_inverted_index.Amazon | 180 |
| abstract_inverted_index.Colony | 214 |
| abstract_inverted_index.change | 147 |
| abstract_inverted_index.energy | 75 |
| abstract_inverted_index.number | 97 |
| abstract_inverted_index.paper, | 113 |
| abstract_inverted_index.scales | 166 |
| abstract_inverted_index.tackle | 115 |
| abstract_inverted_index.Genetic | 126 |
| abstract_inverted_index.Max-Min | 207 |
| abstract_inverted_index.Virtual | 52 |
| abstract_inverted_index.achieve | 229 |
| abstract_inverted_index.acquire | 11 |
| abstract_inverted_index.amounts | 13 |
| abstract_inverted_index.applied | 84 |
| abstract_inverted_index.between | 154 |
| abstract_inverted_index.binding | 56 |
| abstract_inverted_index.demand. | 18 |
| abstract_inverted_index.enables | 8 |
| abstract_inverted_index.finding | 217 |
| abstract_inverted_index.mapping | 48 |
| abstract_inverted_index.numbers | 157 |
| abstract_inverted_index.optimal | 219 |
| abstract_inverted_index.problem | 119, 170 |
| abstract_inverted_index.process | 46 |
| abstract_inverted_index.propose | 130 |
| abstract_inverted_index.related | 74 |
| abstract_inverted_index.results | 222 |
| abstract_inverted_index.scheme. | 220 |
| abstract_inverted_index.variety | 102 |
| abstract_inverted_index.various | 86, 165 |
| abstract_inverted_index.virtual | 15, 184 |
| abstract_inverted_index.Although | 77 |
| abstract_inverted_index.Machines | 53 |
| abstract_inverted_index.Min-Min, | 206 |
| abstract_inverted_index.Standard | 204 |
| abstract_inverted_index.adaptive | 136, 198 |
| abstract_inverted_index.capacity | 189 |
| abstract_inverted_index.compared | 193 |
| abstract_inverted_index.feasible | 230 |
| abstract_inverted_index.hardware | 21 |
| abstract_inverted_index.instance | 177 |
| abstract_inverted_index.machines | 185 |
| abstract_inverted_index.makespan | 124, 235 |
| abstract_inverted_index.measured | 30 |
| abstract_inverted_index.minimize | 123 |
| abstract_inverted_index.mutation | 143 |
| abstract_inverted_index.proposed | 226 |
| abstract_inverted_index.randomly | 161 |
| abstract_inverted_index.services | 28 |
| abstract_inverted_index.simulate | 164 |
| abstract_inverted_index.software | 23 |
| abstract_inverted_index.specific | 32 |
| abstract_inverted_index.storage, | 35 |
| abstract_inverted_index.strategy | 63 |
| abstract_inverted_index.Algorithm | 127, 215 |
| abstract_inverted_index.Annealing | 210 |
| abstract_inverted_index.CloudSim. | 191 |
| abstract_inverted_index.Resources | 19 |
| abstract_inverted_index.Simulated | 209 |
| abstract_inverted_index.according | 148 |
| abstract_inverted_index.algorithm | 227 |
| abstract_inverted_index.computing | 1, 188 |
| abstract_inverted_index.crossover | 139, 145 |
| abstract_inverted_index.customers | 9 |
| abstract_inverted_index.delivered | 26 |
| abstract_inverted_index.different | 187 |
| abstract_inverted_index.generated | 162 |
| abstract_inverted_index.important | 66 |
| abstract_inverted_index.including | 20 |
| abstract_inverted_index.influence | 67 |
| abstract_inverted_index.mutation. | 141 |
| abstract_inverted_index.requests, | 100 |
| abstract_inverted_index.resources | 16, 105 |
| abstract_inverted_index.solutions | 231 |
| abstract_inverted_index.Artificial | 212 |
| abstract_inverted_index.acceptable | 234 |
| abstract_inverted_index.algorithms | 81 |
| abstract_inverted_index.bandwidth, | 37 |
| abstract_inverted_index.commercial | 5 |
| abstract_inverted_index.complexity | 107 |
| abstract_inverted_index.computing, | 41 |
| abstract_inverted_index.datacenter | 72 |
| abstract_inverted_index.efficiency | 70 |
| abstract_inverted_index.platforms, | 87 |
| abstract_inverted_index.scheduling | 43, 62, 80, 118, 169 |
| abstract_inverted_index.computation | 104, 238 |
| abstract_inverted_index.efficiently | 92 |
| abstract_inverted_index.generations | 150 |
| abstract_inverted_index.implemented | 183 |
| abstract_inverted_index.incremental | 132, 199 |
| abstract_inverted_index.performance | 195 |
| abstract_inverted_index.processing, | 36 |
| abstract_inverted_index.traditional | 79 |
| abstract_inverted_index.Experimental | 221 |
| abstract_inverted_index.consumption. | 76 |
| abstract_inverted_index.environment. | 110, 173 |
| abstract_inverted_index.individuals. | 155 |
| abstract_inverted_index.probabilities | 137 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5086422507, https://openalex.org/A5063588331 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I204512498 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.97331607 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |