Adaptive Linguistic Prompting (ALP) Enhances Phishing Webpage Detection in Multimodal Large Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2025.nlp4pi-1.7
Phishing attacks represent a significant cybersecurity threat, necessitating adaptive detection techniques. This study explores few-shot Adaptive Linguistic Prompting (ALP) in detecting phishing webpages through the multimodal capabilities of state-of-the-art large language models (LLMs) such as GPT-4o and Gemini 1.5 Pro. ALP is a structured semantic reasoning method that guides LLMs to analyze textual deception by breaking down linguistic patterns, detecting urgency cues, and identifying manipulative diction commonly found in phishing content. By integrating textual, visual, and URL-based analysis, we propose a unified model capable of identifying sophisticated phishing attempts. Our experiments demonstrate that ALP significantly enhances phishing detection accuracy by guiding LLMs through structured reasoning and contextual analysis. The findings highlight the potential of ALP-integrated multimodal LLMs to advance phishing detection frameworks, achieving an F1-score of 0.93, surpassing traditional approaches. These results establish a foundation for more robust, interpretable, and adaptive linguistic-based phishing detection systems using LLMs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2025.nlp4pi-1.7
- https://aclanthology.org/2025.nlp4pi-1.7.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412944296
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412944296Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2025.nlp4pi-1.7Digital Object Identifier
- Title
-
Adaptive Linguistic Prompting (ALP) Enhances Phishing Webpage Detection in Multimodal Large Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Atharva Bhargude, Ishan Gonehal, Daeung Yoon, Sean O Brien, Kaustubh Vinnakota, Caelán Max Haney, Alejandro Sandoval, Kevin ZhuList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2025.nlp4pi-1.7Publisher landing page
- PDF URL
-
https://aclanthology.org/2025.nlp4pi-1.7.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2025.nlp4pi-1.7.pdfDirect OA link when available
- Concepts
-
Phishing, Computer science, Natural language processing, Artificial intelligence, Speech recognition, Linguistics, World Wide Web, The Internet, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412944296 |
|---|---|
| doi | https://doi.org/10.18653/v1/2025.nlp4pi-1.7 |
| ids.doi | https://doi.org/10.18653/v1/2025.nlp4pi-1.7 |
| ids.openalex | https://openalex.org/W4412944296 |
| fwci | 0.0 |
| type | article |
| title | Adaptive Linguistic Prompting (ALP) Enhances Phishing Webpage Detection in Multimodal Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 85 |
| biblio.first_page | 77 |
| topics[0].id | https://openalex.org/T11644 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Spam and Phishing Detection |
| topics[1].id | https://openalex.org/T10664 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9883999824523926 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Sentiment Analysis and Opinion Mining |
| topics[2].id | https://openalex.org/T11147 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9818999767303467 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Misinformation and Its Impacts |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C83860907 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7980291247367859 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q135005 |
| concepts[0].display_name | Phishing |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7099869847297668 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5539330244064331 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4570498764514923 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C28490314 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4013667404651642 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[4].display_name | Speech recognition |
| concepts[5].id | https://openalex.org/C41895202 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3545563817024231 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[5].display_name | Linguistics |
| concepts[6].id | https://openalex.org/C136764020 |
| concepts[6].level | 1 |
| concepts[6].score | 0.28779107332229614 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[6].display_name | World Wide Web |
| concepts[7].id | https://openalex.org/C110875604 |
| concepts[7].level | 2 |
| concepts[7].score | 0.18395167589187622 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[7].display_name | The Internet |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/phishing |
| keywords[0].score | 0.7980291247367859 |
| keywords[0].display_name | Phishing |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7099869847297668 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.5539330244064331 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4570498764514923 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/speech-recognition |
| keywords[4].score | 0.4013667404651642 |
| keywords[4].display_name | Speech recognition |
| keywords[5].id | https://openalex.org/keywords/linguistics |
| keywords[5].score | 0.3545563817024231 |
| keywords[5].display_name | Linguistics |
| keywords[6].id | https://openalex.org/keywords/world-wide-web |
| keywords[6].score | 0.28779107332229614 |
| keywords[6].display_name | World Wide Web |
| keywords[7].id | https://openalex.org/keywords/the-internet |
| keywords[7].score | 0.18395167589187622 |
| keywords[7].display_name | The Internet |
| language | en |
| locations[0].id | doi:10.18653/v1/2025.nlp4pi-1.7 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2025.nlp4pi-1.7.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Fourth Workshop on NLP for Positive Impact (NLP4PI) |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2025.nlp4pi-1.7 |
| locations[1].id | pmh:oai:arXiv.org:2507.13357 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2507.13357 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2507.13357 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5119204192 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Atharva Bhargude |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Atharva Bhargude |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5119204193 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ishan Gonehal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ishan Gonehal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013644671 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4715-1853 |
| authorships[2].author.display_name | Daeung Yoon |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dave Yoon |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5119204194 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sean O Brien |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sean O Brien |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5119204195 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Kaustubh Vinnakota |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kaustubh Vinnakota |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5090494918 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4209-9470 |
| authorships[5].author.display_name | Caelán Max Haney |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chandler Haney |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5005440935 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8558-6033 |
| authorships[6].author.display_name | Alejandro Sandoval |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Aaron Sandoval |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101471343 |
| authorships[7].author.orcid | https://orcid.org/0009-0008-1881-8384 |
| authorships[7].author.display_name | Kevin Zhu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Kevin Zhu |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2025.nlp4pi-1.7.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Linguistic Prompting (ALP) Enhances Phishing Webpage Detection in Multimodal Large Language Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11644 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Spam and Phishing Detection |
| related_works | https://openalex.org/W2149202530, https://openalex.org/W2807822918, https://openalex.org/W2921723332, https://openalex.org/W4391093354, https://openalex.org/W2482950156, https://openalex.org/W4396966040, https://openalex.org/W2305322260, https://openalex.org/W3139248031, https://openalex.org/W3042334625, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.18653/v1/2025.nlp4pi-1.7 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2025.nlp4pi-1.7.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Fourth Workshop on NLP for Positive Impact (NLP4PI) |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2025.nlp4pi-1.7 |
| primary_location.id | doi:10.18653/v1/2025.nlp4pi-1.7 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2025.nlp4pi-1.7.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Fourth Workshop on NLP for Positive Impact (NLP4PI) |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2025.nlp4pi-1.7 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 42, 80, 133 |
| abstract_inverted_index.By | 71 |
| abstract_inverted_index.an | 123 |
| abstract_inverted_index.as | 34 |
| abstract_inverted_index.by | 54, 99 |
| abstract_inverted_index.in | 19, 68 |
| abstract_inverted_index.is | 41 |
| abstract_inverted_index.of | 27, 84, 113, 125 |
| abstract_inverted_index.to | 50, 117 |
| abstract_inverted_index.we | 78 |
| abstract_inverted_index.1.5 | 38 |
| abstract_inverted_index.ALP | 40, 93 |
| abstract_inverted_index.Our | 89 |
| abstract_inverted_index.The | 108 |
| abstract_inverted_index.and | 36, 62, 75, 105, 139 |
| abstract_inverted_index.for | 135 |
| abstract_inverted_index.the | 24, 111 |
| abstract_inverted_index.LLMs | 49, 101, 116 |
| abstract_inverted_index.Pro. | 39 |
| abstract_inverted_index.This | 11 |
| abstract_inverted_index.down | 56 |
| abstract_inverted_index.more | 136 |
| abstract_inverted_index.such | 33 |
| abstract_inverted_index.that | 47, 92 |
| abstract_inverted_index.(ALP) | 18 |
| abstract_inverted_index.0.93, | 126 |
| abstract_inverted_index.LLMs. | 146 |
| abstract_inverted_index.These | 130 |
| abstract_inverted_index.cues, | 61 |
| abstract_inverted_index.found | 67 |
| abstract_inverted_index.large | 29 |
| abstract_inverted_index.model | 82 |
| abstract_inverted_index.study | 12 |
| abstract_inverted_index.using | 145 |
| abstract_inverted_index.(LLMs) | 32 |
| abstract_inverted_index.GPT-4o | 35 |
| abstract_inverted_index.Gemini | 37 |
| abstract_inverted_index.guides | 48 |
| abstract_inverted_index.method | 46 |
| abstract_inverted_index.models | 31 |
| abstract_inverted_index.advance | 118 |
| abstract_inverted_index.analyze | 51 |
| abstract_inverted_index.attacks | 1 |
| abstract_inverted_index.capable | 83 |
| abstract_inverted_index.diction | 65 |
| abstract_inverted_index.guiding | 100 |
| abstract_inverted_index.propose | 79 |
| abstract_inverted_index.results | 131 |
| abstract_inverted_index.robust, | 137 |
| abstract_inverted_index.systems | 144 |
| abstract_inverted_index.textual | 52 |
| abstract_inverted_index.threat, | 6 |
| abstract_inverted_index.through | 23, 102 |
| abstract_inverted_index.unified | 81 |
| abstract_inverted_index.urgency | 60 |
| abstract_inverted_index.visual, | 74 |
| abstract_inverted_index.Adaptive | 15 |
| abstract_inverted_index.F1-score | 124 |
| abstract_inverted_index.Phishing | 0 |
| abstract_inverted_index.accuracy | 98 |
| abstract_inverted_index.adaptive | 8, 140 |
| abstract_inverted_index.breaking | 55 |
| abstract_inverted_index.commonly | 66 |
| abstract_inverted_index.content. | 70 |
| abstract_inverted_index.enhances | 95 |
| abstract_inverted_index.explores | 13 |
| abstract_inverted_index.few-shot | 14 |
| abstract_inverted_index.findings | 109 |
| abstract_inverted_index.language | 30 |
| abstract_inverted_index.phishing | 21, 69, 87, 96, 119, 142 |
| abstract_inverted_index.semantic | 44 |
| abstract_inverted_index.textual, | 73 |
| abstract_inverted_index.webpages | 22 |
| abstract_inverted_index.Prompting | 17 |
| abstract_inverted_index.URL-based | 76 |
| abstract_inverted_index.achieving | 122 |
| abstract_inverted_index.analysis, | 77 |
| abstract_inverted_index.analysis. | 107 |
| abstract_inverted_index.attempts. | 88 |
| abstract_inverted_index.deception | 53 |
| abstract_inverted_index.detecting | 20, 59 |
| abstract_inverted_index.detection | 9, 97, 120, 143 |
| abstract_inverted_index.establish | 132 |
| abstract_inverted_index.highlight | 110 |
| abstract_inverted_index.patterns, | 58 |
| abstract_inverted_index.potential | 112 |
| abstract_inverted_index.reasoning | 45, 104 |
| abstract_inverted_index.represent | 2 |
| abstract_inverted_index.Linguistic | 16 |
| abstract_inverted_index.contextual | 106 |
| abstract_inverted_index.foundation | 134 |
| abstract_inverted_index.linguistic | 57 |
| abstract_inverted_index.multimodal | 25, 115 |
| abstract_inverted_index.structured | 43, 103 |
| abstract_inverted_index.surpassing | 127 |
| abstract_inverted_index.approaches. | 129 |
| abstract_inverted_index.demonstrate | 91 |
| abstract_inverted_index.experiments | 90 |
| abstract_inverted_index.frameworks, | 121 |
| abstract_inverted_index.identifying | 63, 85 |
| abstract_inverted_index.integrating | 72 |
| abstract_inverted_index.significant | 4 |
| abstract_inverted_index.techniques. | 10 |
| abstract_inverted_index.traditional | 128 |
| abstract_inverted_index.capabilities | 26 |
| abstract_inverted_index.manipulative | 64 |
| abstract_inverted_index.cybersecurity | 5 |
| abstract_inverted_index.necessitating | 7 |
| abstract_inverted_index.significantly | 94 |
| abstract_inverted_index.sophisticated | 86 |
| abstract_inverted_index.ALP-integrated | 114 |
| abstract_inverted_index.interpretable, | 138 |
| abstract_inverted_index.linguistic-based | 141 |
| abstract_inverted_index.state-of-the-art | 28 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.43478082 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |