Adaptive Multi-modal Fusion Instance Segmentation for CAEVs in Complex Conditions: Dataset, Framework and Verifications Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1186/s10033-021-00602-2
Current works of environmental perception for connected autonomous electrified vehicles (CAEVs) mainly focus on the object detection task in good weather and illumination conditions, they often perform poorly in adverse scenarios and have a vague scene parsing ability. This paper aims to develop an end-to-end sharpening mixture of experts (SMoE) fusion framework to improve the robustness and accuracy of the perception systems for CAEVs in complex illumination and weather conditions. Three original contributions make our work distinctive from the existing relevant literature. The Complex KITTI dataset is introduced which consists of 7481 pairs of modified KITTI RGB images and the generated LiDAR dense depth maps, and this dataset is fine annotated in instance-level with the proposed semi-automatic annotation method. The SMoE fusion approach is devised to adaptively learn the robust kernels from complementary modalities. Comprehensive comparative experiments are implemented, and the results show that the proposed SMoE framework yield significant improvements over the other fusion techniques in adverse environmental conditions. This research proposes a SMoE fusion framework to improve the scene parsing ability of the perception systems for CAEVs in adverse conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s10033-021-00602-2
- https://cjme.springeropen.com/track/pdf/10.1186/s10033-021-00602-2
- OA Status
- diamond
- Cited By
- 3
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3112236305
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3112236305Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s10033-021-00602-2Digital Object Identifier
- Title
-
Adaptive Multi-modal Fusion Instance Segmentation for CAEVs in Complex Conditions: Dataset, Framework and VerificationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-30Full publication date if available
- Authors
-
Pai Peng, Keke Geng, Guodong Yin, Yanbo Lu, Weichao Zhuang, Shuaipeng LiuList of authors in order
- Landing page
-
https://doi.org/10.1186/s10033-021-00602-2Publisher landing page
- PDF URL
-
https://cjme.springeropen.com/track/pdf/10.1186/s10033-021-00602-2Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://cjme.springeropen.com/track/pdf/10.1186/s10033-021-00602-2Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Robustness (evolution), Parsing, Segmentation, Perception, Fusion, Computer vision, Annotation, Machine learning, Biochemistry, Gene, Philosophy, Linguistics, Neuroscience, Biology, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3112236305 |
|---|---|
| doi | https://doi.org/10.1186/s10033-021-00602-2 |
| ids.doi | https://doi.org/10.1186/s10033-021-00602-2 |
| ids.mag | 3112236305 |
| ids.openalex | https://openalex.org/W3112236305 |
| fwci | 0.20443896 |
| type | article |
| title | Adaptive Multi-modal Fusion Instance Segmentation for CAEVs in Complex Conditions: Dataset, Framework and Verifications |
| awards[0].id | https://openalex.org/G5071856373 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 51975103 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5342777410 |
| awards[1].funder_id | https://openalex.org/F4320333688 |
| awards[1].display_name | |
| awards[1].funder_award_id | 52025121 |
| awards[1].funder_display_name | National Outstanding Youth Science Fund Project of National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 34 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11605 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Visual Attention and Saliency Detection |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9945999979972839 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320333688 |
| funders[1].ror | |
| funders[1].display_name | National Outstanding Youth Science Fund Project of National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7388150691986084 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6757777333259583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C63479239 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5998276472091675 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[2].display_name | Robustness (evolution) |
| concepts[3].id | https://openalex.org/C186644900 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5959395170211792 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q194152 |
| concepts[3].display_name | Parsing |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5025975704193115 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C26760741 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4597269892692566 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[5].display_name | Perception |
| concepts[6].id | https://openalex.org/C158525013 |
| concepts[6].level | 2 |
| concepts[6].score | 0.455456405878067 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[6].display_name | Fusion |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4254457950592041 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C2776321320 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4247223436832428 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[8].display_name | Annotation |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3610314130783081 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C169760540 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[14].display_name | Neuroscience |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7388150691986084 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6757777333259583 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.5998276472091675 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/parsing |
| keywords[3].score | 0.5959395170211792 |
| keywords[3].display_name | Parsing |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5025975704193115 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/perception |
| keywords[5].score | 0.4597269892692566 |
| keywords[5].display_name | Perception |
| keywords[6].id | https://openalex.org/keywords/fusion |
| keywords[6].score | 0.455456405878067 |
| keywords[6].display_name | Fusion |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4254457950592041 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/annotation |
| keywords[8].score | 0.4247223436832428 |
| keywords[8].display_name | Annotation |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3610314130783081 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1186/s10033-021-00602-2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4220650901 |
| locations[0].source.issn | 1000-9345, 2192-8258 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1000-9345 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Chinese Journal of Mechanical Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319730 |
| locations[0].source.host_organization_name | China Machine Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319730 |
| locations[0].source.host_organization_lineage_names | China Machine Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://cjme.springeropen.com/track/pdf/10.1186/s10033-021-00602-2 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Chinese Journal of Mechanical Engineering |
| locations[0].landing_page_url | https://doi.org/10.1186/s10033-021-00602-2 |
| locations[1].id | pmh:oai:doaj.org/article:18ca67ae37334515a63417ce1bd1490c |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Chinese Journal of Mechanical Engineering, Vol 34, Iss 1, Pp 1-11 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/18ca67ae37334515a63417ce1bd1490c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103110081 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7129-6174 |
| authorships[0].author.display_name | Pai Peng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I76569877 |
| authorships[0].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southeast University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pai Peng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5063355672 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9505-4260 |
| authorships[1].author.display_name | Keke Geng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[1].institutions[0].id | https://openalex.org/I76569877 |
| authorships[1].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southeast University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Keke Geng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[2].author.id | https://openalex.org/A5064394634 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8437-7598 |
| authorships[2].author.display_name | Guodong Yin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[2].institutions[0].id | https://openalex.org/I76569877 |
| authorships[2].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Southeast University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guodong Yin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[3].author.id | https://openalex.org/A5102020887 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5711-7742 |
| authorships[3].author.display_name | Yanbo Lu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[3].institutions[0].id | https://openalex.org/I76569877 |
| authorships[3].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Southeast University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yanbo Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[4].author.id | https://openalex.org/A5083074361 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4958-1446 |
| authorships[4].author.display_name | Weichao Zhuang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[4].institutions[0].id | https://openalex.org/I76569877 |
| authorships[4].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Southeast University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Weichao Zhuang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[5].author.id | https://openalex.org/A5060240389 |
| authorships[5].author.orcid | https://orcid.org/0009-0009-3958-9020 |
| authorships[5].author.display_name | Shuaipeng Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Southeast University, Nanjing, China |
| authorships[5].institutions[0].id | https://openalex.org/I76569877 |
| authorships[5].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Southeast University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Shuaipeng Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Mechanical Engineering, Southeast University, Nanjing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://cjme.springeropen.com/track/pdf/10.1186/s10033-021-00602-2 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Multi-modal Fusion Instance Segmentation for CAEVs in Complex Conditions: Dataset, Framework and Verifications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2361861616, https://openalex.org/W2263699433, https://openalex.org/W2377979023, https://openalex.org/W2218034408, https://openalex.org/W2392921965, https://openalex.org/W2358755282, https://openalex.org/W2625833328, https://openalex.org/W4405124681, https://openalex.org/W2053943328, https://openalex.org/W3046984657 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1186/s10033-021-00602-2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4220650901 |
| best_oa_location.source.issn | 1000-9345, 2192-8258 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1000-9345 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Chinese Journal of Mechanical Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319730 |
| best_oa_location.source.host_organization_name | China Machine Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319730 |
| best_oa_location.source.host_organization_lineage_names | China Machine Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://cjme.springeropen.com/track/pdf/10.1186/s10033-021-00602-2 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Chinese Journal of Mechanical Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s10033-021-00602-2 |
| primary_location.id | doi:10.1186/s10033-021-00602-2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4220650901 |
| primary_location.source.issn | 1000-9345, 2192-8258 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1000-9345 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Chinese Journal of Mechanical Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319730 |
| primary_location.source.host_organization_name | China Machine Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319730 |
| primary_location.source.host_organization_lineage_names | China Machine Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://cjme.springeropen.com/track/pdf/10.1186/s10033-021-00602-2 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Chinese Journal of Mechanical Engineering |
| primary_location.landing_page_url | https://doi.org/10.1186/s10033-021-00602-2 |
| publication_date | 2021-08-30 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2332721970, https://openalex.org/W2218489740, https://openalex.org/W3088650053, https://openalex.org/W2912493354, https://openalex.org/W2915583048, https://openalex.org/W1536680647, https://openalex.org/W2419281044, https://openalex.org/W639708223, https://openalex.org/W2806070179, https://openalex.org/W3003530481, https://openalex.org/W2969583230, https://openalex.org/W2566550653, https://openalex.org/W2555618208, https://openalex.org/W2150066425, https://openalex.org/W2892614179, https://openalex.org/W2968847206, https://openalex.org/W3035574168, https://openalex.org/W2967740791, https://openalex.org/W2993182889, https://openalex.org/W1861492603, https://openalex.org/W1927251054, https://openalex.org/W2337429362, https://openalex.org/W2300469113, https://openalex.org/W611457968, https://openalex.org/W2059319345, https://openalex.org/W260801291, https://openalex.org/W2964211168, https://openalex.org/W2609825896, https://openalex.org/W2795276939, https://openalex.org/W4289387907, https://openalex.org/W2953920664, https://openalex.org/W2522212509, https://openalex.org/W2774839435, https://openalex.org/W2956887593, https://openalex.org/W2962888833, https://openalex.org/W2970095196, https://openalex.org/W2950642167, https://openalex.org/W2963400571, https://openalex.org/W2895946091, https://openalex.org/W2760327656, https://openalex.org/W2791003324, https://openalex.org/W1485037422, https://openalex.org/W1903029394, https://openalex.org/W2964027659, https://openalex.org/W2739253758, https://openalex.org/W2609822318, https://openalex.org/W2340897893, https://openalex.org/W2780038208, https://openalex.org/W2558027072, https://openalex.org/W2803740064, https://openalex.org/W2194775991, https://openalex.org/W2565639579, https://openalex.org/W1533861849, https://openalex.org/W2193145675, https://openalex.org/W2963516811, https://openalex.org/W2059286516, https://openalex.org/W3100811978, https://openalex.org/W2963038646, https://openalex.org/W2918709914, https://openalex.org/W3099024080, https://openalex.org/W2925468094, https://openalex.org/W3106250896, https://openalex.org/W3099155473, https://openalex.org/W2395611524, https://openalex.org/W4362597616 |
| referenced_works_count | 65 |
| abstract_inverted_index.a | 34, 164 |
| abstract_inverted_index.an | 44 |
| abstract_inverted_index.in | 19, 29, 65, 112, 157, 180 |
| abstract_inverted_index.is | 87, 109, 124 |
| abstract_inverted_index.of | 3, 48, 59, 91, 94, 174 |
| abstract_inverted_index.on | 14 |
| abstract_inverted_index.to | 42, 53, 126, 168 |
| abstract_inverted_index.RGB | 97 |
| abstract_inverted_index.The | 83, 120 |
| abstract_inverted_index.and | 22, 32, 57, 68, 99, 106, 140 |
| abstract_inverted_index.are | 138 |
| abstract_inverted_index.for | 6, 63, 178 |
| abstract_inverted_index.our | 75 |
| abstract_inverted_index.the | 15, 55, 60, 79, 100, 115, 129, 141, 145, 153, 170, 175 |
| abstract_inverted_index.7481 | 92 |
| abstract_inverted_index.SMoE | 121, 147, 165 |
| abstract_inverted_index.This | 39, 161 |
| abstract_inverted_index.aims | 41 |
| abstract_inverted_index.fine | 110 |
| abstract_inverted_index.from | 78, 132 |
| abstract_inverted_index.good | 20 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.make | 74 |
| abstract_inverted_index.over | 152 |
| abstract_inverted_index.show | 143 |
| abstract_inverted_index.task | 18 |
| abstract_inverted_index.that | 144 |
| abstract_inverted_index.they | 25 |
| abstract_inverted_index.this | 107 |
| abstract_inverted_index.with | 114 |
| abstract_inverted_index.work | 76 |
| abstract_inverted_index.CAEVs | 64, 179 |
| abstract_inverted_index.KITTI | 85, 96 |
| abstract_inverted_index.LiDAR | 102 |
| abstract_inverted_index.Three | 71 |
| abstract_inverted_index.dense | 103 |
| abstract_inverted_index.depth | 104 |
| abstract_inverted_index.focus | 13 |
| abstract_inverted_index.learn | 128 |
| abstract_inverted_index.maps, | 105 |
| abstract_inverted_index.often | 26 |
| abstract_inverted_index.other | 154 |
| abstract_inverted_index.pairs | 93 |
| abstract_inverted_index.paper | 40 |
| abstract_inverted_index.scene | 36, 171 |
| abstract_inverted_index.vague | 35 |
| abstract_inverted_index.which | 89 |
| abstract_inverted_index.works | 2 |
| abstract_inverted_index.yield | 149 |
| abstract_inverted_index.(SMoE) | 50 |
| abstract_inverted_index.fusion | 51, 122, 155, 166 |
| abstract_inverted_index.images | 98 |
| abstract_inverted_index.mainly | 12 |
| abstract_inverted_index.object | 16 |
| abstract_inverted_index.poorly | 28 |
| abstract_inverted_index.robust | 130 |
| abstract_inverted_index.(CAEVs) | 11 |
| abstract_inverted_index.Complex | 84 |
| abstract_inverted_index.Current | 1 |
| abstract_inverted_index.ability | 173 |
| abstract_inverted_index.adverse | 30, 158, 181 |
| abstract_inverted_index.complex | 66 |
| abstract_inverted_index.dataset | 86, 108 |
| abstract_inverted_index.develop | 43 |
| abstract_inverted_index.devised | 125 |
| abstract_inverted_index.experts | 49 |
| abstract_inverted_index.improve | 54, 169 |
| abstract_inverted_index.kernels | 131 |
| abstract_inverted_index.method. | 119 |
| abstract_inverted_index.mixture | 47 |
| abstract_inverted_index.parsing | 37, 172 |
| abstract_inverted_index.perform | 27 |
| abstract_inverted_index.results | 142 |
| abstract_inverted_index.systems | 62, 177 |
| abstract_inverted_index.weather | 21, 69 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.ability. | 38 |
| abstract_inverted_index.accuracy | 58 |
| abstract_inverted_index.approach | 123 |
| abstract_inverted_index.consists | 90 |
| abstract_inverted_index.existing | 80 |
| abstract_inverted_index.modified | 95 |
| abstract_inverted_index.original | 72 |
| abstract_inverted_index.proposed | 116, 146 |
| abstract_inverted_index.proposes | 163 |
| abstract_inverted_index.relevant | 81 |
| abstract_inverted_index.research | 162 |
| abstract_inverted_index.vehicles | 10 |
| abstract_inverted_index.annotated | 111 |
| abstract_inverted_index.connected | 7 |
| abstract_inverted_index.detection | 17 |
| abstract_inverted_index.framework | 52, 148, 167 |
| abstract_inverted_index.generated | 101 |
| abstract_inverted_index.scenarios | 31 |
| abstract_inverted_index.adaptively | 127 |
| abstract_inverted_index.annotation | 118 |
| abstract_inverted_index.autonomous | 8 |
| abstract_inverted_index.end-to-end | 45 |
| abstract_inverted_index.introduced | 88 |
| abstract_inverted_index.perception | 5, 61, 176 |
| abstract_inverted_index.robustness | 56 |
| abstract_inverted_index.sharpening | 46 |
| abstract_inverted_index.techniques | 156 |
| abstract_inverted_index.comparative | 136 |
| abstract_inverted_index.conditions, | 24 |
| abstract_inverted_index.conditions. | 70, 160, 182 |
| abstract_inverted_index.distinctive | 77 |
| abstract_inverted_index.electrified | 9 |
| abstract_inverted_index.experiments | 137 |
| abstract_inverted_index.literature. | 82 |
| abstract_inverted_index.modalities. | 134 |
| abstract_inverted_index.significant | 150 |
| abstract_inverted_index.illumination | 23, 67 |
| abstract_inverted_index.implemented, | 139 |
| abstract_inverted_index.improvements | 151 |
| abstract_inverted_index.Comprehensive | 135 |
| abstract_inverted_index.complementary | 133 |
| abstract_inverted_index.contributions | 73 |
| abstract_inverted_index.environmental | 4, 159 |
| abstract_inverted_index.instance-level | 113 |
| abstract_inverted_index.semi-automatic | 117 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.46606701 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |