Adaptive Multitask Neural Network for High-Fidelity Wake Flow Modeling of Wind Farms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/en18112897
Wind turbine wake modeling is critical for the design and optimization of wind farms. Traditional methods often struggle with the trade-off between accuracy and computational cost. Recently, data-driven neural networks have emerged as a promising solution, offering both high fidelity and fast inference speeds. To advance this field, a novel machine learning model has been developed to predict wind farm mean flow fields through an adaptive multi-fidelity framework. This model extends transfer-learning-based high-dimensional multi-fidelity modeling to scenarios where varying fidelity levels correspond to distinct physical models, rather than merely differing grid resolutions. Built upon a U-Net architecture and incorporating a wind farm parameter encoder, our framework integrates high-fidelity large-eddy simulation (LES) data with a low-fidelity engineering wake model. By directly predicting time-averaged velocity fields from wind farm parameters, our approach eliminates the need for computationally expensive simulations during inference, achieving real-time performance (1.32×10−5 GPU hours per instance with negligible CPU workload). Comparisons against field-measured data demonstrate that the model accurately approximates high-fidelity LES predictions, even when trained with limited high-fidelity data. Furthermore, its end-to-end extensible design allows full differentiability and seamless integration of multiple fidelity levels, providing a versatile and scalable solution for various downstream tasks, including wind farm control co-design.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en18112897
- https://www.mdpi.com/1996-1073/18/11/2897/pdf?version=1748706555
- OA Status
- gold
- References
- 63
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410960852
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410960852Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en18112897Digital Object Identifier
- Title
-
Adaptive Multitask Neural Network for High-Fidelity Wake Flow Modeling of Wind FarmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-31Full publication date if available
- Authors
-
Dichang Zhang, Christian Santoni, Zexia Zhang, Dimitris Samaras, Ali KhosronejadList of authors in order
- Landing page
-
https://doi.org/10.3390/en18112897Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1073/18/11/2897/pdf?version=1748706555Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1073/18/11/2897/pdf?version=1748706555Direct OA link when available
- Concepts
-
Computer science, Fidelity, Scalability, Artificial neural network, Wake, Wind speed, High fidelity, Field (mathematics), Simulation, Machine learning, Real-time computing, Engineering, Aerospace engineering, Meteorology, Database, Pure mathematics, Telecommunications, Electrical engineering, Mathematics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
63Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410960852 |
|---|---|
| doi | https://doi.org/10.3390/en18112897 |
| ids.doi | https://doi.org/10.3390/en18112897 |
| ids.openalex | https://openalex.org/W4410960852 |
| fwci | 0.0 |
| type | article |
| title | Adaptive Multitask Neural Network for High-Fidelity Wake Flow Modeling of Wind Farms |
| biblio.issue | 11 |
| biblio.volume | 18 |
| biblio.last_page | 2897 |
| biblio.first_page | 2897 |
| grants[0].funder | https://openalex.org/F4320306076 |
| grants[0].award_id | 2233986 |
| grants[0].funder_display_name | National Science Foundation |
| topics[0].id | https://openalex.org/T10680 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Wind Energy Research and Development |
| topics[1].id | https://openalex.org/T11371 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Wind and Air Flow Studies |
| topics[2].id | https://openalex.org/T11254 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Fluid Dynamics and Vibration Analysis |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6023464798927307 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776459999 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5634201765060425 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[1].display_name | Fidelity |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5080628395080566 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5028874278068542 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C48939323 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49665528535842896 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q294879 |
| concepts[4].display_name | Wake |
| concepts[5].id | https://openalex.org/C161067210 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4675765335559845 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1464943 |
| concepts[5].display_name | Wind speed |
| concepts[6].id | https://openalex.org/C113364801 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4609013795852661 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q26674 |
| concepts[6].display_name | High fidelity |
| concepts[7].id | https://openalex.org/C9652623 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4183269739151001 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[7].display_name | Field (mathematics) |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.41561833024024963 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.337528258562088 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32792192697525024 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.26185429096221924 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C146978453 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11374706029891968 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[12].display_name | Aerospace engineering |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10417985916137695 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C119599485 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[17].display_name | Electrical engineering |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6023464798927307 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/fidelity |
| keywords[1].score | 0.5634201765060425 |
| keywords[1].display_name | Fidelity |
| keywords[2].id | https://openalex.org/keywords/scalability |
| keywords[2].score | 0.5080628395080566 |
| keywords[2].display_name | Scalability |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5028874278068542 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/wake |
| keywords[4].score | 0.49665528535842896 |
| keywords[4].display_name | Wake |
| keywords[5].id | https://openalex.org/keywords/wind-speed |
| keywords[5].score | 0.4675765335559845 |
| keywords[5].display_name | Wind speed |
| keywords[6].id | https://openalex.org/keywords/high-fidelity |
| keywords[6].score | 0.4609013795852661 |
| keywords[6].display_name | High fidelity |
| keywords[7].id | https://openalex.org/keywords/field |
| keywords[7].score | 0.4183269739151001 |
| keywords[7].display_name | Field (mathematics) |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.41561833024024963 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.337528258562088 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.32792192697525024 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.26185429096221924 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[12].score | 0.11374706029891968 |
| keywords[12].display_name | Aerospace engineering |
| keywords[13].id | https://openalex.org/keywords/meteorology |
| keywords[13].score | 0.10417985916137695 |
| keywords[13].display_name | Meteorology |
| language | en |
| locations[0].id | doi:10.3390/en18112897 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1073/18/11/2897/pdf?version=1748706555 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en18112897 |
| locations[1].id | pmh:oai:doaj.org/article:bad54ce765b145f38d4183b55e907868 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energies, Vol 18, Iss 11, p 2897 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/bad54ce765b145f38d4183b55e907868 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5089233907 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dichang Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[0].institutions[0].id | https://openalex.org/I59553526 |
| authorships[0].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stony Brook University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dichang Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[1].author.id | https://openalex.org/A5088968560 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7578-2161 |
| authorships[1].author.display_name | Christian Santoni |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[1].institutions[0].id | https://openalex.org/I59553526 |
| authorships[1].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stony Brook University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Christian Santoni |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[2].author.id | https://openalex.org/A5082218019 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7062-1342 |
| authorships[2].author.display_name | Zexia Zhang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[2].institutions[0].id | https://openalex.org/I59553526 |
| authorships[2].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Stony Brook University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zexia Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[3].author.id | https://openalex.org/A5076307452 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1373-0294 |
| authorships[3].author.display_name | Dimitris Samaras |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[3].institutions[0].id | https://openalex.org/I59553526 |
| authorships[3].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Stony Brook University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dimitris Samaras |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[4].author.id | https://openalex.org/A5063239990 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ali Khosronejad |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA |
| authorships[4].institutions[0].id | https://openalex.org/I59553526 |
| authorships[4].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Stony Brook University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ali Khosronejad |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1073/18/11/2897/pdf?version=1748706555 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Multitask Neural Network for High-Fidelity Wake Flow Modeling of Wind Farms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10680 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Wind Energy Research and Development |
| related_works | https://openalex.org/W4313443006, https://openalex.org/W2945374968, https://openalex.org/W4293777179, https://openalex.org/W4385452045, https://openalex.org/W2164070813, https://openalex.org/W2135608140, https://openalex.org/W2895525995, https://openalex.org/W2332512904, https://openalex.org/W4224231624, https://openalex.org/W2319626700 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/en18112897 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1073/18/11/2897/pdf?version=1748706555 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en18112897 |
| primary_location.id | doi:10.3390/en18112897 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1073/18/11/2897/pdf?version=1748706555 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en18112897 |
| publication_date | 2025-05-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2622215529, https://openalex.org/W1984850424, https://openalex.org/W2100006423, https://openalex.org/W2100532085, https://openalex.org/W1986377643, https://openalex.org/W2164594722, https://openalex.org/W2735874191, https://openalex.org/W1996329180, https://openalex.org/W1965190986, https://openalex.org/W2117719808, https://openalex.org/W2314252857, https://openalex.org/W2003977652, https://openalex.org/W2006592649, https://openalex.org/W2144207130, https://openalex.org/W2615525210, https://openalex.org/W2963067376, https://openalex.org/W2914985209, https://openalex.org/W2946690855, https://openalex.org/W2160892379, https://openalex.org/W2734870087, https://openalex.org/W2106564841, https://openalex.org/W2071562292, https://openalex.org/W2080900415, https://openalex.org/W2041693694, https://openalex.org/W2530065124, https://openalex.org/W2885395706, https://openalex.org/W3047226283, https://openalex.org/W3006504076, https://openalex.org/W3196586297, https://openalex.org/W4200046696, https://openalex.org/W4399976696, https://openalex.org/W4389398330, https://openalex.org/W3083834825, https://openalex.org/W4367838711, https://openalex.org/W4384651960, https://openalex.org/W4200352996, https://openalex.org/W1901129140, https://openalex.org/W2395579298, https://openalex.org/W4200000156, https://openalex.org/W2970971581, https://openalex.org/W1977046327, https://openalex.org/W1973333099, https://openalex.org/W3184646938, https://openalex.org/W2964185501, https://openalex.org/W2982303846, https://openalex.org/W6756810460, https://openalex.org/W3115552943, https://openalex.org/W4307312371, https://openalex.org/W4375958696, https://openalex.org/W3107984262, https://openalex.org/W3088277274, https://openalex.org/W2074447412, https://openalex.org/W2002335991, https://openalex.org/W2165019514, https://openalex.org/W2482388642, https://openalex.org/W4313442374, https://openalex.org/W4311907735, https://openalex.org/W2322424187, https://openalex.org/W4391565347, https://openalex.org/W4390873978, https://openalex.org/W2888764808, https://openalex.org/W2800901701, https://openalex.org/W3100636883 |
| referenced_works_count | 63 |
| abstract_inverted_index.a | 33, 48, 94, 99, 113, 187 |
| abstract_inverted_index.By | 118 |
| abstract_inverted_index.To | 44 |
| abstract_inverted_index.an | 64 |
| abstract_inverted_index.as | 32 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 11, 182 |
| abstract_inverted_index.to | 56, 75, 82 |
| abstract_inverted_index.CPU | 149 |
| abstract_inverted_index.GPU | 143 |
| abstract_inverted_index.LES | 162 |
| abstract_inverted_index.and | 9, 23, 40, 97, 179, 189 |
| abstract_inverted_index.for | 6, 133, 192 |
| abstract_inverted_index.has | 53 |
| abstract_inverted_index.its | 172 |
| abstract_inverted_index.our | 104, 128 |
| abstract_inverted_index.per | 145 |
| abstract_inverted_index.the | 7, 19, 131, 157 |
| abstract_inverted_index.This | 68 |
| abstract_inverted_index.Wind | 0 |
| abstract_inverted_index.been | 54 |
| abstract_inverted_index.both | 37 |
| abstract_inverted_index.data | 111, 154 |
| abstract_inverted_index.even | 164 |
| abstract_inverted_index.farm | 59, 101, 126, 198 |
| abstract_inverted_index.fast | 41 |
| abstract_inverted_index.flow | 61 |
| abstract_inverted_index.from | 124 |
| abstract_inverted_index.full | 177 |
| abstract_inverted_index.grid | 90 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.high | 38 |
| abstract_inverted_index.mean | 60 |
| abstract_inverted_index.need | 132 |
| abstract_inverted_index.than | 87 |
| abstract_inverted_index.that | 156 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.upon | 93 |
| abstract_inverted_index.wake | 2, 116 |
| abstract_inverted_index.when | 165 |
| abstract_inverted_index.wind | 12, 58, 100, 125, 197 |
| abstract_inverted_index.with | 18, 112, 147, 167 |
| abstract_inverted_index.(LES) | 110 |
| abstract_inverted_index.Built | 92 |
| abstract_inverted_index.U-Net | 95 |
| abstract_inverted_index.cost. | 25 |
| abstract_inverted_index.data. | 170 |
| abstract_inverted_index.hours | 144 |
| abstract_inverted_index.model | 52, 69, 158 |
| abstract_inverted_index.novel | 49 |
| abstract_inverted_index.often | 16 |
| abstract_inverted_index.where | 77 |
| abstract_inverted_index.allows | 176 |
| abstract_inverted_index.design | 8, 175 |
| abstract_inverted_index.during | 137 |
| abstract_inverted_index.farms. | 13 |
| abstract_inverted_index.field, | 47 |
| abstract_inverted_index.fields | 62, 123 |
| abstract_inverted_index.levels | 80 |
| abstract_inverted_index.merely | 88 |
| abstract_inverted_index.model. | 117 |
| abstract_inverted_index.neural | 28 |
| abstract_inverted_index.rather | 86 |
| abstract_inverted_index.tasks, | 195 |
| abstract_inverted_index.advance | 45 |
| abstract_inverted_index.against | 152 |
| abstract_inverted_index.between | 21 |
| abstract_inverted_index.control | 199 |
| abstract_inverted_index.emerged | 31 |
| abstract_inverted_index.extends | 70 |
| abstract_inverted_index.levels, | 185 |
| abstract_inverted_index.limited | 168 |
| abstract_inverted_index.machine | 50 |
| abstract_inverted_index.methods | 15 |
| abstract_inverted_index.models, | 85 |
| abstract_inverted_index.predict | 57 |
| abstract_inverted_index.speeds. | 43 |
| abstract_inverted_index.through | 63 |
| abstract_inverted_index.trained | 166 |
| abstract_inverted_index.turbine | 1 |
| abstract_inverted_index.various | 193 |
| abstract_inverted_index.varying | 78 |
| abstract_inverted_index.accuracy | 22 |
| abstract_inverted_index.adaptive | 65 |
| abstract_inverted_index.approach | 129 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.directly | 119 |
| abstract_inverted_index.distinct | 83 |
| abstract_inverted_index.encoder, | 103 |
| abstract_inverted_index.fidelity | 39, 79, 184 |
| abstract_inverted_index.instance | 146 |
| abstract_inverted_index.learning | 51 |
| abstract_inverted_index.modeling | 3, 74 |
| abstract_inverted_index.multiple | 183 |
| abstract_inverted_index.networks | 29 |
| abstract_inverted_index.offering | 36 |
| abstract_inverted_index.physical | 84 |
| abstract_inverted_index.scalable | 190 |
| abstract_inverted_index.seamless | 180 |
| abstract_inverted_index.solution | 191 |
| abstract_inverted_index.struggle | 17 |
| abstract_inverted_index.velocity | 122 |
| abstract_inverted_index.Recently, | 26 |
| abstract_inverted_index.achieving | 139 |
| abstract_inverted_index.developed | 55 |
| abstract_inverted_index.differing | 89 |
| abstract_inverted_index.expensive | 135 |
| abstract_inverted_index.framework | 105 |
| abstract_inverted_index.including | 196 |
| abstract_inverted_index.inference | 42 |
| abstract_inverted_index.parameter | 102 |
| abstract_inverted_index.promising | 34 |
| abstract_inverted_index.providing | 186 |
| abstract_inverted_index.real-time | 140 |
| abstract_inverted_index.scenarios | 76 |
| abstract_inverted_index.solution, | 35 |
| abstract_inverted_index.trade-off | 20 |
| abstract_inverted_index.versatile | 188 |
| abstract_inverted_index.accurately | 159 |
| abstract_inverted_index.co-design. | 200 |
| abstract_inverted_index.correspond | 81 |
| abstract_inverted_index.downstream | 194 |
| abstract_inverted_index.eliminates | 130 |
| abstract_inverted_index.end-to-end | 173 |
| abstract_inverted_index.extensible | 174 |
| abstract_inverted_index.framework. | 67 |
| abstract_inverted_index.inference, | 138 |
| abstract_inverted_index.integrates | 106 |
| abstract_inverted_index.large-eddy | 108 |
| abstract_inverted_index.negligible | 148 |
| abstract_inverted_index.predicting | 120 |
| abstract_inverted_index.simulation | 109 |
| abstract_inverted_index.workload). | 150 |
| abstract_inverted_index.Comparisons | 151 |
| abstract_inverted_index.Traditional | 14 |
| abstract_inverted_index.data-driven | 27 |
| abstract_inverted_index.demonstrate | 155 |
| abstract_inverted_index.engineering | 115 |
| abstract_inverted_index.integration | 181 |
| abstract_inverted_index.parameters, | 127 |
| abstract_inverted_index.performance | 141 |
| abstract_inverted_index.simulations | 136 |
| abstract_inverted_index.Furthermore, | 171 |
| abstract_inverted_index.approximates | 160 |
| abstract_inverted_index.architecture | 96 |
| abstract_inverted_index.low-fidelity | 114 |
| abstract_inverted_index.optimization | 10 |
| abstract_inverted_index.predictions, | 163 |
| abstract_inverted_index.resolutions. | 91 |
| abstract_inverted_index.(1.32×10−5 | 142 |
| abstract_inverted_index.computational | 24 |
| abstract_inverted_index.high-fidelity | 107, 161, 169 |
| abstract_inverted_index.incorporating | 98 |
| abstract_inverted_index.time-averaged | 121 |
| abstract_inverted_index.field-measured | 153 |
| abstract_inverted_index.multi-fidelity | 66, 73 |
| abstract_inverted_index.computationally | 134 |
| abstract_inverted_index.high-dimensional | 72 |
| abstract_inverted_index.differentiability | 178 |
| abstract_inverted_index.transfer-learning-based | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.12768497 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |