Adaptive Neural Network Basis Methods for Partial Differential Equations with Low-Regular Solutions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4208/cicp.oa-2024-0310
This paper aims to devise an adaptive neural network basis method for numerically solving a second-order semi-linear partial differential equation with low-regular solutions in two/three dimensions. The method is obtained by combining basis functions from a class of shallow neural networks and the resulting multi-scale analogues, a residual strategy in adaptive methods and the non-overlapping domain decomposition method. Firstly, based on the solution residual, the domain $\Omega$ is iteratively decomposed and eventually partitioned into $K+1$ non-overlapping subdomains, denoted respectively as $\{\Omega_k\}_{k=0}^K$, where the exact solution is smooth on subdomain $\Omega_0$ and low-regular on subdomain $\Omega_k$ ($1\leq k\leq K$). Secondly, the low-regular solutions on different subdomains $\Omega_k$ ($1\leq k\leq K$) are approximated by neural networks with different scales, while the smooth solution on subdomain $\Omega_0$ is approximated by the initialized neural network. Thirdly, we determine the undetermined coefficients by solving the linear least squares problems directly or the nonlinear least squares problem via the Gauss-Newton method. The proposed method can be extended to multi-level case naturally. Finally, we use this adaptive method for several peak problems in two/three dimensions to show its high-efficient computational performance.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.4208/cicp.oa-2024-0310
- https://global-sci.org/index.php/cicp/article/download/23353/36227
- OA Status
- bronze
- OpenAlex ID
- https://openalex.org/W4416778015
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416778015Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4208/cicp.oa-2024-0310Digital Object Identifier
- Title
-
Adaptive Neural Network Basis Methods for Partial Differential Equations with Low-Regular SolutionsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-28Full publication date if available
- Authors
-
Jianguo Huang, Haohao Wu, Tao ZhouList of authors in order
- Landing page
-
https://doi.org/10.4208/cicp.oa-2024-0310Publisher landing page
- PDF URL
-
https://global-sci.org/index.php/cicp/article/download/23353/36227Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://global-sci.org/index.php/cicp/article/download/23353/36227Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416778015 |
|---|---|
| doi | https://doi.org/10.4208/cicp.oa-2024-0310 |
| ids.doi | https://doi.org/10.4208/cicp.oa-2024-0310 |
| ids.openalex | https://openalex.org/W4416778015 |
| fwci | |
| type | article |
| title | Adaptive Neural Network Basis Methods for Partial Differential Equations with Low-Regular Solutions |
| biblio.issue | 2 |
| biblio.volume | 39 |
| biblio.last_page | 577 |
| biblio.first_page | 553 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.4208/cicp.oa-2024-0310 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S34010870 |
| locations[0].source.issn | 1815-2406, 1991-7120 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1815-2406 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Communications in Computational Physics |
| locations[0].source.host_organization | https://openalex.org/P4310311721 |
| locations[0].source.host_organization_name | Cambridge University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| locations[0].source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| locations[0].license | |
| locations[0].pdf_url | https://global-sci.org/index.php/cicp/article/download/23353/36227 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Communications in Computational Physics |
| locations[0].landing_page_url | https://doi.org/10.4208/cicp.oa-2024-0310 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100651268 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0825-3056 |
| authorships[0].author.display_name | Jianguo Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University |
| authorships[0].institutions[0].id | https://openalex.org/I183067930 |
| authorships[0].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianguo Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shanghai Jiao Tong University |
| authorships[1].author.id | https://openalex.org/A5028208451 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3852-2608 |
| authorships[1].author.display_name | Haohao Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haohao Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shanghai Jiao Tong University |
| authorships[2].author.id | https://openalex.org/A5062283081 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0537-3562 |
| authorships[2].author.display_name | Tao Zhou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[2].affiliations[0].raw_affiliation_string | Chinese Academy of Sciences |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Tao Zhou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chinese Academy of Sciences |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://global-sci.org/index.php/cicp/article/download/23353/36227 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | Adaptive Neural Network Basis Methods for Partial Differential Equations with Low-Regular Solutions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-01T00:03:43.161839 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4208/cicp.oa-2024-0310 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S34010870 |
| best_oa_location.source.issn | 1815-2406, 1991-7120 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1815-2406 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Communications in Computational Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311721 |
| best_oa_location.source.host_organization_name | Cambridge University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| best_oa_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://global-sci.org/index.php/cicp/article/download/23353/36227 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Communications in Computational Physics |
| best_oa_location.landing_page_url | https://doi.org/10.4208/cicp.oa-2024-0310 |
| primary_location.id | doi:10.4208/cicp.oa-2024-0310 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S34010870 |
| primary_location.source.issn | 1815-2406, 1991-7120 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1815-2406 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Communications in Computational Physics |
| primary_location.source.host_organization | https://openalex.org/P4310311721 |
| primary_location.source.host_organization_name | Cambridge University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| primary_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| primary_location.license | |
| primary_location.pdf_url | https://global-sci.org/index.php/cicp/article/download/23353/36227 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Communications in Computational Physics |
| primary_location.landing_page_url | https://doi.org/10.4208/cicp.oa-2024-0310 |
| publication_date | 2025-11-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 35, 46 |
| abstract_inverted_index.an | 5 |
| abstract_inverted_index.as | 79 |
| abstract_inverted_index.be | 159 |
| abstract_inverted_index.by | 30, 111, 126, 137 |
| abstract_inverted_index.in | 23, 49, 175 |
| abstract_inverted_index.is | 28, 67, 85, 124 |
| abstract_inverted_index.of | 37 |
| abstract_inverted_index.on | 60, 87, 92, 102, 121 |
| abstract_inverted_index.or | 145 |
| abstract_inverted_index.to | 3, 161, 178 |
| abstract_inverted_index.we | 132, 166 |
| abstract_inverted_index.K$) | 108 |
| abstract_inverted_index.The | 26, 155 |
| abstract_inverted_index.and | 41, 52, 70, 90 |
| abstract_inverted_index.are | 109 |
| abstract_inverted_index.can | 158 |
| abstract_inverted_index.for | 11, 171 |
| abstract_inverted_index.its | 180 |
| abstract_inverted_index.the | 42, 53, 61, 64, 82, 99, 118, 127, 134, 139, 146, 152 |
| abstract_inverted_index.use | 167 |
| abstract_inverted_index.via | 151 |
| abstract_inverted_index.K$). | 97 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.case | 163 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.into | 73 |
| abstract_inverted_index.peak | 173 |
| abstract_inverted_index.show | 179 |
| abstract_inverted_index.this | 168 |
| abstract_inverted_index.with | 20, 114 |
| abstract_inverted_index.$K+1$ | 74 |
| abstract_inverted_index.based | 59 |
| abstract_inverted_index.basis | 9, 32 |
| abstract_inverted_index.class | 36 |
| abstract_inverted_index.exact | 83 |
| abstract_inverted_index.k\leq | 96, 107 |
| abstract_inverted_index.least | 141, 148 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.where | 81 |
| abstract_inverted_index.while | 117 |
| abstract_inverted_index.devise | 4 |
| abstract_inverted_index.domain | 55, 65 |
| abstract_inverted_index.linear | 140 |
| abstract_inverted_index.method | 10, 27, 157, 170 |
| abstract_inverted_index.neural | 7, 39, 112, 129 |
| abstract_inverted_index.smooth | 86, 119 |
| abstract_inverted_index.($1\leq | 95, 106 |
| abstract_inverted_index.denoted | 77 |
| abstract_inverted_index.method. | 57, 154 |
| abstract_inverted_index.methods | 51 |
| abstract_inverted_index.network | 8 |
| abstract_inverted_index.partial | 17 |
| abstract_inverted_index.problem | 150 |
| abstract_inverted_index.scales, | 116 |
| abstract_inverted_index.several | 172 |
| abstract_inverted_index.shallow | 38 |
| abstract_inverted_index.solving | 13, 138 |
| abstract_inverted_index.squares | 142, 149 |
| abstract_inverted_index.$\Omega$ | 66 |
| abstract_inverted_index.Finally, | 165 |
| abstract_inverted_index.Firstly, | 58 |
| abstract_inverted_index.Thirdly, | 131 |
| abstract_inverted_index.adaptive | 6, 50, 169 |
| abstract_inverted_index.directly | 144 |
| abstract_inverted_index.equation | 19 |
| abstract_inverted_index.extended | 160 |
| abstract_inverted_index.network. | 130 |
| abstract_inverted_index.networks | 40, 113 |
| abstract_inverted_index.obtained | 29 |
| abstract_inverted_index.problems | 143, 174 |
| abstract_inverted_index.proposed | 156 |
| abstract_inverted_index.residual | 47 |
| abstract_inverted_index.solution | 62, 84, 120 |
| abstract_inverted_index.strategy | 48 |
| abstract_inverted_index.Secondly, | 98 |
| abstract_inverted_index.combining | 31 |
| abstract_inverted_index.determine | 133 |
| abstract_inverted_index.different | 103, 115 |
| abstract_inverted_index.functions | 33 |
| abstract_inverted_index.nonlinear | 147 |
| abstract_inverted_index.residual, | 63 |
| abstract_inverted_index.resulting | 43 |
| abstract_inverted_index.solutions | 22, 101 |
| abstract_inverted_index.subdomain | 88, 93, 122 |
| abstract_inverted_index.two/three | 24, 176 |
| abstract_inverted_index.$\Omega_0$ | 89, 123 |
| abstract_inverted_index.$\Omega_k$ | 94, 105 |
| abstract_inverted_index.analogues, | 45 |
| abstract_inverted_index.decomposed | 69 |
| abstract_inverted_index.dimensions | 177 |
| abstract_inverted_index.eventually | 71 |
| abstract_inverted_index.naturally. | 164 |
| abstract_inverted_index.subdomains | 104 |
| abstract_inverted_index.dimensions. | 25 |
| abstract_inverted_index.initialized | 128 |
| abstract_inverted_index.iteratively | 68 |
| abstract_inverted_index.low-regular | 21, 91, 100 |
| abstract_inverted_index.multi-level | 162 |
| abstract_inverted_index.multi-scale | 44 |
| abstract_inverted_index.numerically | 12 |
| abstract_inverted_index.partitioned | 72 |
| abstract_inverted_index.semi-linear | 16 |
| abstract_inverted_index.subdomains, | 76 |
| abstract_inverted_index.Gauss-Newton | 153 |
| abstract_inverted_index.approximated | 110, 125 |
| abstract_inverted_index.coefficients | 136 |
| abstract_inverted_index.differential | 18 |
| abstract_inverted_index.performance. | 183 |
| abstract_inverted_index.respectively | 78 |
| abstract_inverted_index.second-order | 15 |
| abstract_inverted_index.undetermined | 135 |
| abstract_inverted_index.computational | 182 |
| abstract_inverted_index.decomposition | 56 |
| abstract_inverted_index.high-efficient | 181 |
| abstract_inverted_index.non-overlapping | 54, 75 |
| abstract_inverted_index.$\{\Omega_k\}_{k=0}^K$, | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |