Adaptive neural network basis methods for partial differential equations with low-regular solutions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.01998
This paper aims to devise an adaptive neural network basis method for numerically solving a second-order semilinear partial differential equation (PDE) with low-regular solutions in two/three dimensions. The method is obtained by combining basis functions from a class of shallow neural networks and the resulting multi-scale analogues, a residual strategy in adaptive methods and the non-overlapping domain decomposition method. At the beginning, in view of the solution residual, we partition the total domain $Ω$ into $K+1$ non-overlapping subdomains, denoted respectively as $\{Ω_k\}_{k=0}^K$, where the exact solution is smooth on subdomain $Ω_{0}$ and low-regular on subdomain $Ω_{k}$ ($1\le k\le K$). Secondly, the low-regular solutions on different subdomains \(Ω_{k}\)~($1\le k\le K$) are approximated by neural networks with different scales, while the smooth solution on subdomain \(Ω_0\) is approximated by the initialized neural network. Thirdly, we determine the undetermined coefficients by solving the linear least squares problems directly or the nonlinear least squares problem via the Gauss-Newton method. The proposed method can be extended to multi-level case naturally. Finally, we use this adaptive method for several peak problems in two/three dimensions to show its high-efficient computational performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.01998
- https://arxiv.org/pdf/2411.01998
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404353335
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404353335Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.01998Digital Object Identifier
- Title
-
Adaptive neural network basis methods for partial differential equations with low-regular solutionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-04Full publication date if available
- Authors
-
Jianguo Huang, Haohao Wu, Tao ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.01998Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.01998Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.01998Direct OA link when available
- Concepts
-
Basis (linear algebra), Artificial neural network, Mathematics, Partial differential equation, Applied mathematics, Differential equation, Computer science, Mathematical analysis, Artificial intelligence, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404353335 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.01998 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.01998 |
| ids.openalex | https://openalex.org/W4404353335 |
| fwci | |
| type | preprint |
| title | Adaptive neural network basis methods for partial differential equations with low-regular solutions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9009000062942505 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12426560 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6001368761062622 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[0].display_name | Basis (linear algebra) |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5784744620323181 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4991309642791748 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C93779851 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4955383539199829 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[3].display_name | Partial differential equation |
| concepts[4].id | https://openalex.org/C28826006 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48796528577804565 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[4].display_name | Applied mathematics |
| concepts[5].id | https://openalex.org/C78045399 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42025288939476013 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11214 |
| concepts[5].display_name | Differential equation |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3496047258377075 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.31059250235557556 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15126246213912964 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.06514665484428406 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/basis |
| keywords[0].score | 0.6001368761062622 |
| keywords[0].display_name | Basis (linear algebra) |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5784744620323181 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.4991309642791748 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[3].score | 0.4955383539199829 |
| keywords[3].display_name | Partial differential equation |
| keywords[4].id | https://openalex.org/keywords/applied-mathematics |
| keywords[4].score | 0.48796528577804565 |
| keywords[4].display_name | Applied mathematics |
| keywords[5].id | https://openalex.org/keywords/differential-equation |
| keywords[5].score | 0.42025288939476013 |
| keywords[5].display_name | Differential equation |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3496047258377075 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[7].score | 0.31059250235557556 |
| keywords[7].display_name | Mathematical analysis |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.15126246213912964 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/geometry |
| keywords[9].score | 0.06514665484428406 |
| keywords[9].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.01998 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.01998 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.01998 |
| locations[1].id | doi:10.48550/arxiv.2411.01998 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.01998 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100651268 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0825-3056 |
| authorships[0].author.display_name | Jianguo Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Jianguo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028208451 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3852-2608 |
| authorships[1].author.display_name | Haohao Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Haohao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062283081 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0537-3562 |
| authorships[2].author.display_name | Tao Zhou |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhou, Tao |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.01998 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive neural network basis methods for partial differential equations with low-regular solutions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9009000062942505 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2392320810, https://openalex.org/W2078609410, https://openalex.org/W2387724274, https://openalex.org/W4382011329, https://openalex.org/W2534768866, https://openalex.org/W2368061881, https://openalex.org/W1974665041, https://openalex.org/W4239643353, https://openalex.org/W3037512798, https://openalex.org/W2029287765 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.01998 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.01998 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.01998 |
| primary_location.id | pmh:oai:arXiv.org:2411.01998 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.01998 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.01998 |
| publication_date | 2024-11-04 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 36, 47 |
| abstract_inverted_index.At | 59 |
| abstract_inverted_index.an | 5 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.be | 159 |
| abstract_inverted_index.by | 31, 111, 126, 137 |
| abstract_inverted_index.in | 24, 50, 62, 175 |
| abstract_inverted_index.is | 29, 86, 124 |
| abstract_inverted_index.of | 38, 64 |
| abstract_inverted_index.on | 88, 93, 103, 121 |
| abstract_inverted_index.or | 145 |
| abstract_inverted_index.to | 3, 161, 178 |
| abstract_inverted_index.we | 68, 132, 166 |
| abstract_inverted_index.K$) | 108 |
| abstract_inverted_index.The | 27, 155 |
| abstract_inverted_index.and | 42, 53, 91 |
| abstract_inverted_index.are | 109 |
| abstract_inverted_index.can | 158 |
| abstract_inverted_index.for | 11, 171 |
| abstract_inverted_index.its | 180 |
| abstract_inverted_index.the | 43, 54, 60, 65, 70, 83, 100, 118, 127, 134, 139, 146, 152 |
| abstract_inverted_index.use | 167 |
| abstract_inverted_index.via | 151 |
| abstract_inverted_index.$Ω$ | 73 |
| abstract_inverted_index.K$). | 98 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.case | 163 |
| abstract_inverted_index.from | 35 |
| abstract_inverted_index.into | 74 |
| abstract_inverted_index.k\le | 97, 107 |
| abstract_inverted_index.peak | 173 |
| abstract_inverted_index.show | 179 |
| abstract_inverted_index.this | 168 |
| abstract_inverted_index.view | 63 |
| abstract_inverted_index.with | 21, 114 |
| abstract_inverted_index.$K+1$ | 75 |
| abstract_inverted_index.(PDE) | 20 |
| abstract_inverted_index.basis | 9, 33 |
| abstract_inverted_index.class | 37 |
| abstract_inverted_index.exact | 84 |
| abstract_inverted_index.least | 141, 148 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.total | 71 |
| abstract_inverted_index.where | 82 |
| abstract_inverted_index.while | 117 |
| abstract_inverted_index.($1\le | 96 |
| abstract_inverted_index.devise | 4 |
| abstract_inverted_index.domain | 56, 72 |
| abstract_inverted_index.linear | 140 |
| abstract_inverted_index.method | 10, 28, 157, 170 |
| abstract_inverted_index.neural | 7, 40, 112, 129 |
| abstract_inverted_index.smooth | 87, 119 |
| abstract_inverted_index.denoted | 78 |
| abstract_inverted_index.method. | 58, 154 |
| abstract_inverted_index.methods | 52 |
| abstract_inverted_index.network | 8 |
| abstract_inverted_index.partial | 17 |
| abstract_inverted_index.problem | 150 |
| abstract_inverted_index.scales, | 116 |
| abstract_inverted_index.several | 172 |
| abstract_inverted_index.shallow | 39 |
| abstract_inverted_index.solving | 13, 138 |
| abstract_inverted_index.squares | 142, 149 |
| abstract_inverted_index.$Ω_{0}$ | 90 |
| abstract_inverted_index.$Ω_{k}$ | 95 |
| abstract_inverted_index.Finally, | 165 |
| abstract_inverted_index.Thirdly, | 131 |
| abstract_inverted_index.\(Ω_0\) | 123 |
| abstract_inverted_index.adaptive | 6, 51, 169 |
| abstract_inverted_index.directly | 144 |
| abstract_inverted_index.equation | 19 |
| abstract_inverted_index.extended | 160 |
| abstract_inverted_index.network. | 130 |
| abstract_inverted_index.networks | 41, 113 |
| abstract_inverted_index.obtained | 30 |
| abstract_inverted_index.problems | 143, 174 |
| abstract_inverted_index.proposed | 156 |
| abstract_inverted_index.residual | 48 |
| abstract_inverted_index.solution | 66, 85, 120 |
| abstract_inverted_index.strategy | 49 |
| abstract_inverted_index.Secondly, | 99 |
| abstract_inverted_index.combining | 32 |
| abstract_inverted_index.determine | 133 |
| abstract_inverted_index.different | 104, 115 |
| abstract_inverted_index.functions | 34 |
| abstract_inverted_index.nonlinear | 147 |
| abstract_inverted_index.partition | 69 |
| abstract_inverted_index.residual, | 67 |
| abstract_inverted_index.resulting | 44 |
| abstract_inverted_index.solutions | 23, 102 |
| abstract_inverted_index.subdomain | 89, 94, 122 |
| abstract_inverted_index.two/three | 25, 176 |
| abstract_inverted_index.analogues, | 46 |
| abstract_inverted_index.beginning, | 61 |
| abstract_inverted_index.dimensions | 177 |
| abstract_inverted_index.naturally. | 164 |
| abstract_inverted_index.semilinear | 16 |
| abstract_inverted_index.subdomains | 105 |
| abstract_inverted_index.dimensions. | 26 |
| abstract_inverted_index.initialized | 128 |
| abstract_inverted_index.low-regular | 22, 92, 101 |
| abstract_inverted_index.multi-level | 162 |
| abstract_inverted_index.multi-scale | 45 |
| abstract_inverted_index.numerically | 12 |
| abstract_inverted_index.subdomains, | 77 |
| abstract_inverted_index.Gauss-Newton | 153 |
| abstract_inverted_index.approximated | 110, 125 |
| abstract_inverted_index.coefficients | 136 |
| abstract_inverted_index.differential | 18 |
| abstract_inverted_index.performance. | 183 |
| abstract_inverted_index.respectively | 79 |
| abstract_inverted_index.second-order | 15 |
| abstract_inverted_index.undetermined | 135 |
| abstract_inverted_index.computational | 182 |
| abstract_inverted_index.decomposition | 57 |
| abstract_inverted_index.high-efficient | 181 |
| abstract_inverted_index.non-overlapping | 55, 76 |
| abstract_inverted_index.\(Ω_{k}\)~($1\le | 106 |
| abstract_inverted_index.$\{Ω_k\}_{k=0}^K$, | 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |