Adaptive Parameterization for Neural Dialogue Generation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.18653/v1/d19-1188
Neural conversation systems generate responses based on the sequence-to-sequence (SEQ2SEQ) paradigm. Typically, the model is equipped with a single set of learned parameters to generate responses for given input contexts. When confronting diverse conversations, its adaptability is rather limited and the model is hence prone to generate generic responses. In this work, we propose an {\bf Ada}ptive {\bf N}eural {\bf D}ialogue generation model, \textsc{AdaND}, which manages various conversations with conversation-specific parameterization. For each conversation, the model generates parameters of the encoder-decoder by referring to the input context. In particular, we propose two adaptive parameterization mechanisms: a context-aware and a topic-aware parameterization mechanism. The context-aware parameterization directly generates the parameters by capturing local semantics of the given context. The topic-aware parameterization enables parameter sharing among conversations with similar topics by first inferring the latent topics of the given context and then generating the parameters with respect to the distributional topics. Extensive experiments conducted on a large-scale real-world conversational dataset show that our model achieves superior performance in terms of both quantitative metrics and human evaluations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/d19-1188
- https://www.aclweb.org/anthology/D19-1188.pdf
- OA Status
- gold
- Cited By
- 9
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2977149219
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2977149219Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/d19-1188Digital Object Identifier
- Title
-
Adaptive Parameterization for Neural Dialogue GenerationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Hengyi Cai, Hongshen Chen, Cheng Zhang, Yonghao Song, Xiaofang Zhao, Dawei YinList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/d19-1188Publisher landing page
- PDF URL
-
https://www.aclweb.org/anthology/D19-1188.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.aclweb.org/anthology/D19-1188.pdfDirect OA link when available
- Concepts
-
Computer science, Conversation, Context (archaeology), Adaptability, Set (abstract data type), Semantics (computer science), Sequence (biology), Artificial intelligence, Context model, Encoder, Adaptation (eye), Machine learning, Linguistics, Philosophy, Ecology, Object (grammar), Operating system, Genetics, Optics, Programming language, Physics, Paleontology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 5, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2977149219 |
|---|---|
| doi | https://doi.org/10.18653/v1/d19-1188 |
| ids.doi | https://doi.org/10.18653/v1/d19-1188 |
| ids.mag | 2977149219 |
| ids.openalex | https://openalex.org/W2977149219 |
| fwci | 1.38255971 |
| type | preprint |
| title | Adaptive Parameterization for Neural Dialogue Generation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1802 |
| biblio.first_page | 1793 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T12031 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9977999925613403 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech and dialogue systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8304945230484009 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777200299 |
| concepts[1].level | 2 |
| concepts[1].score | 0.787911593914032 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q52943 |
| concepts[1].display_name | Conversation |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.687320351600647 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C177606310 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6048842668533325 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5674297 |
| concepts[3].display_name | Adaptability |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5819284915924072 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C184337299 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5810582041740417 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[5].display_name | Semantics (computer science) |
| concepts[6].id | https://openalex.org/C2778112365 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5762660503387451 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[6].display_name | Sequence (biology) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.543183445930481 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C183322885 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4762454330921173 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17007702 |
| concepts[8].display_name | Context model |
| concepts[9].id | https://openalex.org/C118505674 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45953062176704407 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[9].display_name | Encoder |
| concepts[10].id | https://openalex.org/C139807058 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4150206446647644 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[10].display_name | Adaptation (eye) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36656561493873596 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0702848732471466 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C18903297 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[14].display_name | Ecology |
| concepts[15].id | https://openalex.org/C2781238097 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[15].display_name | Object (grammar) |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C54355233 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[17].display_name | Genetics |
| concepts[18].id | https://openalex.org/C120665830 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[18].display_name | Optics |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| concepts[22].id | https://openalex.org/C86803240 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[22].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8304945230484009 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/conversation |
| keywords[1].score | 0.787911593914032 |
| keywords[1].display_name | Conversation |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.687320351600647 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/adaptability |
| keywords[3].score | 0.6048842668533325 |
| keywords[3].display_name | Adaptability |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.5819284915924072 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/semantics |
| keywords[5].score | 0.5810582041740417 |
| keywords[5].display_name | Semantics (computer science) |
| keywords[6].id | https://openalex.org/keywords/sequence |
| keywords[6].score | 0.5762660503387451 |
| keywords[6].display_name | Sequence (biology) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.543183445930481 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/context-model |
| keywords[8].score | 0.4762454330921173 |
| keywords[8].display_name | Context model |
| keywords[9].id | https://openalex.org/keywords/encoder |
| keywords[9].score | 0.45953062176704407 |
| keywords[9].display_name | Encoder |
| keywords[10].id | https://openalex.org/keywords/adaptation |
| keywords[10].score | 0.4150206446647644 |
| keywords[10].display_name | Adaptation (eye) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.36656561493873596 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/linguistics |
| keywords[12].score | 0.0702848732471466 |
| keywords[12].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.18653/v1/d19-1188 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.aclweb.org/anthology/D19-1188.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/d19-1188 |
| locations[1].id | pmh:oai:arXiv.org:2001.06626 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2001.06626 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2001.06626 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5062665223 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7147-5666 |
| authorships[0].author.display_name | Hengyi Cai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210090176, https://openalex.org/I4210165038 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Computing Technology, Chinese Academy of Sciences § University of Chinese Academy of Sciences |
| authorships[0].institutions[0].id | https://openalex.org/I4210090176 |
| authorships[0].institutions[0].ror | https://ror.org/0090r4d87 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210090176 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Institute of Computing Technology |
| authorships[0].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[0].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hengyi Cai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Computing Technology, Chinese Academy of Sciences § University of Chinese Academy of Sciences |
| authorships[1].author.id | https://openalex.org/A5102966812 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9164-2898 |
| authorships[1].author.display_name | Hongshen Chen |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4400573203 |
| authorships[1].affiliations[0].raw_affiliation_string | Data Science Lab, |
| authorships[1].institutions[0].id | https://openalex.org/I4400573203 |
| authorships[1].institutions[0].ror | https://ror.org/02bczqy30 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I201841394, https://openalex.org/I4400573203 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Nature Inspires Creativity Engineers Lab |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongshen Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Data Science Lab, |
| authorships[2].author.id | https://openalex.org/A5100439666 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8640-9370 |
| authorships[2].author.display_name | Cheng Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210090176, https://openalex.org/I4210165038 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Computing Technology, Chinese Academy of Sciences § University of Chinese Academy of Sciences |
| authorships[2].institutions[0].id | https://openalex.org/I4210090176 |
| authorships[2].institutions[0].ror | https://ror.org/0090r4d87 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210090176 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Institute of Computing Technology |
| authorships[2].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[2].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cheng Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Computing Technology, Chinese Academy of Sciences § University of Chinese Academy of Sciences |
| authorships[3].author.id | https://openalex.org/A5101557904 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1700-1133 |
| authorships[3].author.display_name | Yonghao Song |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210090176, https://openalex.org/I4210165038 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Computing Technology, Chinese Academy of Sciences § University of Chinese Academy of Sciences |
| authorships[3].institutions[0].id | https://openalex.org/I4210090176 |
| authorships[3].institutions[0].ror | https://ror.org/0090r4d87 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210090176 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Institute of Computing Technology |
| authorships[3].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[3].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yonghao Song |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Computing Technology, Chinese Academy of Sciences § University of Chinese Academy of Sciences |
| authorships[4].author.id | https://openalex.org/A5100750786 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1898-1359 |
| authorships[4].author.display_name | Xiaofang Zhao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210090176, https://openalex.org/I4210165038 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Computing Technology, Chinese Academy of Sciences § University of Chinese Academy of Sciences |
| authorships[4].institutions[0].id | https://openalex.org/I4210090176 |
| authorships[4].institutions[0].ror | https://ror.org/0090r4d87 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210090176 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Institute of Computing Technology |
| authorships[4].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[4].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaofang Zhao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Computing Technology, Chinese Academy of Sciences § University of Chinese Academy of Sciences |
| authorships[5].author.id | https://openalex.org/A5054482111 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8846-2001 |
| authorships[5].author.display_name | Dawei Yin |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4400573203 |
| authorships[5].affiliations[0].raw_affiliation_string | Data Science Lab, |
| authorships[5].institutions[0].id | https://openalex.org/I4400573203 |
| authorships[5].institutions[0].ror | https://ror.org/02bczqy30 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I201841394, https://openalex.org/I4400573203 |
| authorships[5].institutions[0].country_code | |
| authorships[5].institutions[0].display_name | Nature Inspires Creativity Engineers Lab |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Dawei Yin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Data Science Lab, |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.aclweb.org/anthology/D19-1188.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Parameterization for Neural Dialogue Generation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2357124094, https://openalex.org/W2387399993, https://openalex.org/W2389739210, https://openalex.org/W2348924972, https://openalex.org/W2365736347, https://openalex.org/W2047454415, https://openalex.org/W2070040999, https://openalex.org/W2387293848, https://openalex.org/W2250140200, https://openalex.org/W3121791438 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.18653/v1/d19-1188 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.aclweb.org/anthology/D19-1188.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/d19-1188 |
| primary_location.id | doi:10.18653/v1/d19-1188 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.aclweb.org/anthology/D19-1188.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/d19-1188 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2606712314, https://openalex.org/W2888456631, https://openalex.org/W2963403868, https://openalex.org/W1522301498, https://openalex.org/W2435450765, https://openalex.org/W1959608418, https://openalex.org/W2621133045, https://openalex.org/W2964121744, https://openalex.org/W2950037544, https://openalex.org/W2963223306, https://openalex.org/W2963963856, https://openalex.org/W2964119254, https://openalex.org/W2962883855, https://openalex.org/W2757121784, https://openalex.org/W2626778328, https://openalex.org/W2399880602, https://openalex.org/W2101105183, https://openalex.org/W2743149734, https://openalex.org/W2789033601, https://openalex.org/W2963035145, https://openalex.org/W2133564696, https://openalex.org/W2130942839, https://openalex.org/W2804255934, https://openalex.org/W2798385473, https://openalex.org/W2964308564, https://openalex.org/W2521114121, https://openalex.org/W2064675550, https://openalex.org/W2962755817, https://openalex.org/W2187089797, https://openalex.org/W2963332597, https://openalex.org/W2615146352, https://openalex.org/W2250539671, https://openalex.org/W2328886022, https://openalex.org/W2949888546, https://openalex.org/W2963958388, https://openalex.org/W2963206148, https://openalex.org/W2963411289, https://openalex.org/W3022187094, https://openalex.org/W2962717182, https://openalex.org/W2963790827, https://openalex.org/W2962810352, https://openalex.org/W2940154139, https://openalex.org/W2962854379, https://openalex.org/W2593696076, https://openalex.org/W2157331557, https://openalex.org/W2963469850, https://openalex.org/W2963903950, https://openalex.org/W4385245566, https://openalex.org/W2963825865, https://openalex.org/W2962974452 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 17, 95, 98, 153 |
| abstract_inverted_index.In | 49, 87 |
| abstract_inverted_index.an | 54 |
| abstract_inverted_index.by | 81, 109, 128 |
| abstract_inverted_index.in | 165 |
| abstract_inverted_index.is | 14, 36, 42 |
| abstract_inverted_index.of | 20, 78, 113, 134, 167 |
| abstract_inverted_index.on | 6, 152 |
| abstract_inverted_index.to | 23, 45, 83, 145 |
| abstract_inverted_index.we | 52, 89 |
| abstract_inverted_index.For | 71 |
| abstract_inverted_index.The | 102, 117 |
| abstract_inverted_index.and | 39, 97, 138, 171 |
| abstract_inverted_index.for | 26 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.our | 160 |
| abstract_inverted_index.set | 19 |
| abstract_inverted_index.the | 7, 12, 40, 74, 79, 84, 107, 114, 131, 135, 141, 146 |
| abstract_inverted_index.two | 91 |
| abstract_inverted_index.When | 30 |
| abstract_inverted_index.both | 168 |
| abstract_inverted_index.each | 72 |
| abstract_inverted_index.show | 158 |
| abstract_inverted_index.that | 159 |
| abstract_inverted_index.then | 139 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.with | 16, 68, 125, 143 |
| abstract_inverted_index.{\bf | 55, 57, 59 |
| abstract_inverted_index.among | 123 |
| abstract_inverted_index.based | 5 |
| abstract_inverted_index.first | 129 |
| abstract_inverted_index.given | 27, 115, 136 |
| abstract_inverted_index.hence | 43 |
| abstract_inverted_index.human | 172 |
| abstract_inverted_index.input | 28, 85 |
| abstract_inverted_index.local | 111 |
| abstract_inverted_index.model | 13, 41, 75, 161 |
| abstract_inverted_index.prone | 44 |
| abstract_inverted_index.terms | 166 |
| abstract_inverted_index.which | 64 |
| abstract_inverted_index.work, | 51 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.latent | 132 |
| abstract_inverted_index.model, | 62 |
| abstract_inverted_index.rather | 37 |
| abstract_inverted_index.single | 18 |
| abstract_inverted_index.topics | 127, 133 |
| abstract_inverted_index.N}eural | 58 |
| abstract_inverted_index.context | 137 |
| abstract_inverted_index.dataset | 157 |
| abstract_inverted_index.diverse | 32 |
| abstract_inverted_index.enables | 120 |
| abstract_inverted_index.generic | 47 |
| abstract_inverted_index.learned | 21 |
| abstract_inverted_index.limited | 38 |
| abstract_inverted_index.manages | 65 |
| abstract_inverted_index.metrics | 170 |
| abstract_inverted_index.propose | 53, 90 |
| abstract_inverted_index.respect | 144 |
| abstract_inverted_index.sharing | 122 |
| abstract_inverted_index.similar | 126 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.topics. | 148 |
| abstract_inverted_index.various | 66 |
| abstract_inverted_index.achieves | 162 |
| abstract_inverted_index.adaptive | 92 |
| abstract_inverted_index.context. | 86, 116 |
| abstract_inverted_index.directly | 105 |
| abstract_inverted_index.equipped | 15 |
| abstract_inverted_index.generate | 3, 24, 46 |
| abstract_inverted_index.superior | 163 |
| abstract_inverted_index.(SEQ2SEQ) | 9 |
| abstract_inverted_index.Ada}ptive | 56 |
| abstract_inverted_index.D}ialogue | 60 |
| abstract_inverted_index.Extensive | 149 |
| abstract_inverted_index.capturing | 110 |
| abstract_inverted_index.conducted | 151 |
| abstract_inverted_index.contexts. | 29 |
| abstract_inverted_index.generates | 76, 106 |
| abstract_inverted_index.inferring | 130 |
| abstract_inverted_index.paradigm. | 10 |
| abstract_inverted_index.parameter | 121 |
| abstract_inverted_index.referring | 82 |
| abstract_inverted_index.responses | 4, 25 |
| abstract_inverted_index.semantics | 112 |
| abstract_inverted_index.Typically, | 11 |
| abstract_inverted_index.generating | 140 |
| abstract_inverted_index.generation | 61 |
| abstract_inverted_index.mechanism. | 101 |
| abstract_inverted_index.parameters | 22, 77, 108, 142 |
| abstract_inverted_index.real-world | 155 |
| abstract_inverted_index.responses. | 48 |
| abstract_inverted_index.confronting | 31 |
| abstract_inverted_index.experiments | 150 |
| abstract_inverted_index.large-scale | 154 |
| abstract_inverted_index.mechanisms: | 94 |
| abstract_inverted_index.particular, | 88 |
| abstract_inverted_index.performance | 164 |
| abstract_inverted_index.topic-aware | 99, 118 |
| abstract_inverted_index.adaptability | 35 |
| abstract_inverted_index.conversation | 1 |
| abstract_inverted_index.evaluations. | 173 |
| abstract_inverted_index.quantitative | 169 |
| abstract_inverted_index.context-aware | 96, 103 |
| abstract_inverted_index.conversation, | 73 |
| abstract_inverted_index.conversations | 67, 124 |
| abstract_inverted_index.conversational | 156 |
| abstract_inverted_index.conversations, | 33 |
| abstract_inverted_index.distributional | 147 |
| abstract_inverted_index.\textsc{AdaND}, | 63 |
| abstract_inverted_index.encoder-decoder | 80 |
| abstract_inverted_index.parameterization | 93, 100, 104, 119 |
| abstract_inverted_index.parameterization. | 70 |
| abstract_inverted_index.sequence-to-sequence | 8 |
| abstract_inverted_index.conversation-specific | 69 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.85735836 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |