Adaptive Source-Channel Coding for Semantic Communications Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.07958
Semantic communications (SemComs) have emerged as a promising paradigm for joint data and task-oriented transmissions, combining the demands for both the bit-accurate delivery and end-to-end (E2E) distortion minimization. However, current joint source-channel coding (JSCC) in SemComs is not compatible with the existing communication systems and cannot adapt to the variations of the sources or the channels, while separate source-channel coding (SSCC) is suboptimal in the finite blocklength regime. To address these issues, we propose an adaptive source-channel coding (ASCC) scheme for SemComs over parallel Gaussian channels, where the deep neural network (DNN)-based semantic source coding and conventional digital channel coding are separately deployed and adaptively designed. To enable efficient adaptation between the source and channel coding, we first approximate the E2E data and semantic distortions as functions of source coding rate and bit error ratio (BER) via logistic regression, where BER is further modeled as functions of signal-to-noise ratio (SNR) and channel coding rate. Then, we formulate the weighted sum E2E distortion minimization problem for joint source-channel coding rate and power allocation over parallel channels, which is solved by the successive convex approximation. Finally, simulation results demonstrate that the proposed ASCC scheme outperforms typical deep JSCC and SSCC schemes for both the single- and parallel-channel scenarios while maintaining full compatibility with practical digital systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.07958
- https://arxiv.org/pdf/2508.07958
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416243096
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416243096Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.07958Digital Object Identifier
- Title
-
Adaptive Source-Channel Coding for Semantic CommunicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-11Full publication date if available
- Authors
-
Dongxu Li, Kai Yuan, Chuan Huang, Xiaoqi Qin, Shuguang Cui, Ping ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.07958Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.07958Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.07958Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416243096 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.07958 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.07958 |
| ids.openalex | https://openalex.org/W4416243096 |
| fwci | |
| type | preprint |
| title | Adaptive Source-Channel Coding for Semantic Communications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.07958 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.07958 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.07958 |
| locations[1].id | doi:10.48550/arxiv.2508.07958 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.07958 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100386792 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8543-4761 |
| authorships[0].author.display_name | Dongxu Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Dongxu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031800537 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9837-6772 |
| authorships[1].author.display_name | Kai Yuan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuan, Kai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101912486 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5965-0823 |
| authorships[2].author.display_name | Chuan Huang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huang, Chuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091040593 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5788-0657 |
| authorships[3].author.display_name | Xiaoqi Qin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qin, Xiaoqi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111910647 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Shuguang Cui |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Cui, Shuguang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100405787 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0269-104X |
| authorships[5].author.display_name | Ping Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Ping |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.07958 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Source-Channel Coding for Semantic Communications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:06:52.709248 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.07958 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.07958 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.07958 |
| primary_location.id | pmh:oai:arXiv.org:2508.07958 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.07958 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.07958 |
| publication_date | 2025-08-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6 |
| abstract_inverted_index.To | 68, 106 |
| abstract_inverted_index.an | 74 |
| abstract_inverted_index.as | 5, 125, 144 |
| abstract_inverted_index.by | 178 |
| abstract_inverted_index.in | 34, 63 |
| abstract_inverted_index.is | 36, 61, 141, 176 |
| abstract_inverted_index.of | 50, 127, 146 |
| abstract_inverted_index.or | 53 |
| abstract_inverted_index.to | 47 |
| abstract_inverted_index.we | 72, 116, 155 |
| abstract_inverted_index.BER | 140 |
| abstract_inverted_index.E2E | 120, 160 |
| abstract_inverted_index.and | 12, 23, 44, 95, 103, 113, 122, 131, 150, 169, 196, 203 |
| abstract_inverted_index.are | 100 |
| abstract_inverted_index.bit | 132 |
| abstract_inverted_index.for | 9, 18, 80, 164, 199 |
| abstract_inverted_index.not | 37 |
| abstract_inverted_index.sum | 159 |
| abstract_inverted_index.the | 16, 20, 40, 48, 51, 54, 64, 87, 111, 119, 157, 179, 188, 201 |
| abstract_inverted_index.via | 136 |
| abstract_inverted_index.ASCC | 190 |
| abstract_inverted_index.JSCC | 195 |
| abstract_inverted_index.SSCC | 197 |
| abstract_inverted_index.both | 19, 200 |
| abstract_inverted_index.data | 11, 121 |
| abstract_inverted_index.deep | 88, 194 |
| abstract_inverted_index.full | 208 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.over | 82, 172 |
| abstract_inverted_index.rate | 130, 168 |
| abstract_inverted_index.that | 187 |
| abstract_inverted_index.with | 39, 210 |
| abstract_inverted_index.(BER) | 135 |
| abstract_inverted_index.(E2E) | 25 |
| abstract_inverted_index.(SNR) | 149 |
| abstract_inverted_index.Then, | 154 |
| abstract_inverted_index.adapt | 46 |
| abstract_inverted_index.error | 133 |
| abstract_inverted_index.first | 117 |
| abstract_inverted_index.joint | 10, 30, 165 |
| abstract_inverted_index.power | 170 |
| abstract_inverted_index.rate. | 153 |
| abstract_inverted_index.ratio | 134, 148 |
| abstract_inverted_index.these | 70 |
| abstract_inverted_index.where | 86, 139 |
| abstract_inverted_index.which | 175 |
| abstract_inverted_index.while | 56, 206 |
| abstract_inverted_index.(ASCC) | 78 |
| abstract_inverted_index.(JSCC) | 33 |
| abstract_inverted_index.(SSCC) | 60 |
| abstract_inverted_index.cannot | 45 |
| abstract_inverted_index.coding | 32, 59, 77, 94, 99, 129, 152, 167 |
| abstract_inverted_index.convex | 181 |
| abstract_inverted_index.enable | 107 |
| abstract_inverted_index.finite | 65 |
| abstract_inverted_index.neural | 89 |
| abstract_inverted_index.scheme | 79, 191 |
| abstract_inverted_index.solved | 177 |
| abstract_inverted_index.source | 93, 112, 128 |
| abstract_inverted_index.SemComs | 35, 81 |
| abstract_inverted_index.address | 69 |
| abstract_inverted_index.between | 110 |
| abstract_inverted_index.channel | 98, 114, 151 |
| abstract_inverted_index.coding, | 115 |
| abstract_inverted_index.current | 29 |
| abstract_inverted_index.demands | 17 |
| abstract_inverted_index.digital | 97, 212 |
| abstract_inverted_index.emerged | 4 |
| abstract_inverted_index.further | 142 |
| abstract_inverted_index.issues, | 71 |
| abstract_inverted_index.modeled | 143 |
| abstract_inverted_index.network | 90 |
| abstract_inverted_index.problem | 163 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.regime. | 67 |
| abstract_inverted_index.results | 185 |
| abstract_inverted_index.schemes | 198 |
| abstract_inverted_index.single- | 202 |
| abstract_inverted_index.sources | 52 |
| abstract_inverted_index.systems | 43 |
| abstract_inverted_index.typical | 193 |
| abstract_inverted_index.Finally, | 183 |
| abstract_inverted_index.Gaussian | 84 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.Semantic | 0 |
| abstract_inverted_index.adaptive | 75 |
| abstract_inverted_index.delivery | 22 |
| abstract_inverted_index.deployed | 102 |
| abstract_inverted_index.existing | 41 |
| abstract_inverted_index.logistic | 137 |
| abstract_inverted_index.paradigm | 8 |
| abstract_inverted_index.parallel | 83, 173 |
| abstract_inverted_index.proposed | 189 |
| abstract_inverted_index.semantic | 92, 123 |
| abstract_inverted_index.separate | 57 |
| abstract_inverted_index.systems. | 213 |
| abstract_inverted_index.weighted | 158 |
| abstract_inverted_index.(SemComs) | 2 |
| abstract_inverted_index.channels, | 55, 85, 174 |
| abstract_inverted_index.combining | 15 |
| abstract_inverted_index.designed. | 105 |
| abstract_inverted_index.efficient | 108 |
| abstract_inverted_index.formulate | 156 |
| abstract_inverted_index.functions | 126, 145 |
| abstract_inverted_index.practical | 211 |
| abstract_inverted_index.promising | 7 |
| abstract_inverted_index.scenarios | 205 |
| abstract_inverted_index.adaptation | 109 |
| abstract_inverted_index.adaptively | 104 |
| abstract_inverted_index.allocation | 171 |
| abstract_inverted_index.compatible | 38 |
| abstract_inverted_index.distortion | 26, 161 |
| abstract_inverted_index.end-to-end | 24 |
| abstract_inverted_index.separately | 101 |
| abstract_inverted_index.simulation | 184 |
| abstract_inverted_index.suboptimal | 62 |
| abstract_inverted_index.successive | 180 |
| abstract_inverted_index.variations | 49 |
| abstract_inverted_index.(DNN)-based | 91 |
| abstract_inverted_index.approximate | 118 |
| abstract_inverted_index.blocklength | 66 |
| abstract_inverted_index.demonstrate | 186 |
| abstract_inverted_index.distortions | 124 |
| abstract_inverted_index.maintaining | 207 |
| abstract_inverted_index.outperforms | 192 |
| abstract_inverted_index.regression, | 138 |
| abstract_inverted_index.bit-accurate | 21 |
| abstract_inverted_index.conventional | 96 |
| abstract_inverted_index.minimization | 162 |
| abstract_inverted_index.communication | 42 |
| abstract_inverted_index.compatibility | 209 |
| abstract_inverted_index.minimization. | 27 |
| abstract_inverted_index.task-oriented | 13 |
| abstract_inverted_index.approximation. | 182 |
| abstract_inverted_index.communications | 1 |
| abstract_inverted_index.source-channel | 31, 58, 76, 166 |
| abstract_inverted_index.transmissions, | 14 |
| abstract_inverted_index.signal-to-noise | 147 |
| abstract_inverted_index.parallel-channel | 204 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |