Adaptive Target Detection for FDA-MIMO Radar with Training Data in Gaussian noise Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.14180
This paper addresses the problem of detecting a moving target embedded in Gaussian noise with an unknown covariance matrix for frequency diverse array multiple-input multiple-output (FDA-MIMO) radar. To end it, assume that obtaining a set of training data is available. Moreover, we propose three adaptive detectors in accordance with the one-step generalized likelihood ratio test (GLRT), two-step GLRT, and Rao criteria, namely OGLRT, TGLRT, and Rao. The LH adaptive matched filter (LHAMF) detector is also introduced when decomposing the Rao test. Next, all provided detectors have constant false alarm rate (CFAR) properties against the covariance matrix. Besides, the closed-form expressions for false alarm probability (PFA) and detection probability (PD) are derived. Finally, this paper substantiates the correctness of the aforementioned algorithms through numerical simulations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.14180
- https://arxiv.org/pdf/2403.14180
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393118424
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393118424Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.14180Digital Object Identifier
- Title
-
Adaptive Target Detection for FDA-MIMO Radar with Training Data in Gaussian noiseWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-21Full publication date if available
- Authors
-
P.G. Li, Bang Huang, Wen-Qin WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.14180Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.14180Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.14180Direct OA link when available
- Concepts
-
Training (meteorology), Computer science, Training set, Radar, Noise (video), Gaussian noise, MIMO, Artificial intelligence, Telecommunications, Geography, Meteorology, Channel (broadcasting), Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393118424 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.14180 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.14180 |
| ids.openalex | https://openalex.org/W4393118424 |
| fwci | |
| type | preprint |
| title | Adaptive Target Detection for FDA-MIMO Radar with Training Data in Gaussian noise |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10891 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9751999974250793 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Radar Systems and Signal Processing |
| topics[1].id | https://openalex.org/T12879 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9240000247955322 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed Sensor Networks and Detection Algorithms |
| topics[2].id | https://openalex.org/T11038 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9223999977111816 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Advanced SAR Imaging Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777211547 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7010948657989502 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[0].display_name | Training (meteorology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5947248339653015 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C51632099 |
| concepts[2].level | 2 |
| concepts[2].score | 0.569438099861145 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[2].display_name | Training set |
| concepts[3].id | https://openalex.org/C554190296 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5573961734771729 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[3].display_name | Radar |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4965060353279114 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C4199805 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45639464259147644 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2725903 |
| concepts[5].display_name | Gaussian noise |
| concepts[6].id | https://openalex.org/C207987634 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4540288746356964 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q176862 |
| concepts[6].display_name | MIMO |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37478357553482056 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C76155785 |
| concepts[8].level | 1 |
| concepts[8].score | 0.16557413339614868 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[8].display_name | Telecommunications |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12420833110809326 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C153294291 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07390135526657104 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[10].display_name | Meteorology |
| concepts[11].id | https://openalex.org/C127162648 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[11].display_name | Channel (broadcasting) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/training |
| keywords[0].score | 0.7010948657989502 |
| keywords[0].display_name | Training (meteorology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5947248339653015 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/training-set |
| keywords[2].score | 0.569438099861145 |
| keywords[2].display_name | Training set |
| keywords[3].id | https://openalex.org/keywords/radar |
| keywords[3].score | 0.5573961734771729 |
| keywords[3].display_name | Radar |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.4965060353279114 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/gaussian-noise |
| keywords[5].score | 0.45639464259147644 |
| keywords[5].display_name | Gaussian noise |
| keywords[6].id | https://openalex.org/keywords/mimo |
| keywords[6].score | 0.4540288746356964 |
| keywords[6].display_name | MIMO |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.37478357553482056 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/telecommunications |
| keywords[8].score | 0.16557413339614868 |
| keywords[8].display_name | Telecommunications |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.12420833110809326 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/meteorology |
| keywords[10].score | 0.07390135526657104 |
| keywords[10].display_name | Meteorology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.14180 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.14180 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.14180 |
| locations[1].id | doi:10.48550/arxiv.2403.14180 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.14180 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058733471 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0884-3996 |
| authorships[0].author.display_name | P.G. Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Ping |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102555001 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Bang Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huang, Bang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049463786 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4466-9585 |
| authorships[2].author.display_name | Wen-Qin Wang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wang, Wen-Qin |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.14180 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Target Detection for FDA-MIMO Radar with Training Data in Gaussian noise |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10891 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9751999974250793 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Radar Systems and Signal Processing |
| related_works | https://openalex.org/W230091440, https://openalex.org/W2233261550, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W2997094352, https://openalex.org/W3216976533, https://openalex.org/W100620283, https://openalex.org/W2495260952, https://openalex.org/W4366179611, https://openalex.org/W2551249631 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.14180 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.14180 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.14180 |
| primary_location.id | pmh:oai:arXiv.org:2403.14180 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.14180 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.14180 |
| publication_date | 2024-03-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 33 |
| abstract_inverted_index.LH | 67 |
| abstract_inverted_index.To | 27 |
| abstract_inverted_index.an | 15 |
| abstract_inverted_index.in | 11, 46 |
| abstract_inverted_index.is | 38, 73 |
| abstract_inverted_index.of | 5, 35, 117 |
| abstract_inverted_index.we | 41 |
| abstract_inverted_index.Rao | 59, 79 |
| abstract_inverted_index.The | 66 |
| abstract_inverted_index.all | 82 |
| abstract_inverted_index.and | 58, 64, 105 |
| abstract_inverted_index.are | 109 |
| abstract_inverted_index.end | 28 |
| abstract_inverted_index.for | 19, 100 |
| abstract_inverted_index.it, | 29 |
| abstract_inverted_index.set | 34 |
| abstract_inverted_index.the | 3, 49, 78, 93, 97, 115, 118 |
| abstract_inverted_index.(PD) | 108 |
| abstract_inverted_index.Rao. | 65 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 74 |
| abstract_inverted_index.data | 37 |
| abstract_inverted_index.have | 85 |
| abstract_inverted_index.rate | 89 |
| abstract_inverted_index.test | 54 |
| abstract_inverted_index.that | 31 |
| abstract_inverted_index.this | 112 |
| abstract_inverted_index.when | 76 |
| abstract_inverted_index.with | 14, 48 |
| abstract_inverted_index.(PFA) | 104 |
| abstract_inverted_index.GLRT, | 57 |
| abstract_inverted_index.Next, | 81 |
| abstract_inverted_index.alarm | 88, 102 |
| abstract_inverted_index.array | 22 |
| abstract_inverted_index.false | 87, 101 |
| abstract_inverted_index.noise | 13 |
| abstract_inverted_index.paper | 1, 113 |
| abstract_inverted_index.ratio | 53 |
| abstract_inverted_index.test. | 80 |
| abstract_inverted_index.three | 43 |
| abstract_inverted_index.(CFAR) | 90 |
| abstract_inverted_index.OGLRT, | 62 |
| abstract_inverted_index.TGLRT, | 63 |
| abstract_inverted_index.assume | 30 |
| abstract_inverted_index.filter | 70 |
| abstract_inverted_index.matrix | 18 |
| abstract_inverted_index.moving | 8 |
| abstract_inverted_index.namely | 61 |
| abstract_inverted_index.radar. | 26 |
| abstract_inverted_index.target | 9 |
| abstract_inverted_index.(GLRT), | 55 |
| abstract_inverted_index.(LHAMF) | 71 |
| abstract_inverted_index.against | 92 |
| abstract_inverted_index.diverse | 21 |
| abstract_inverted_index.matched | 69 |
| abstract_inverted_index.matrix. | 95 |
| abstract_inverted_index.problem | 4 |
| abstract_inverted_index.propose | 42 |
| abstract_inverted_index.through | 121 |
| abstract_inverted_index.unknown | 16 |
| abstract_inverted_index.Besides, | 96 |
| abstract_inverted_index.Finally, | 111 |
| abstract_inverted_index.Gaussian | 12 |
| abstract_inverted_index.adaptive | 44, 68 |
| abstract_inverted_index.constant | 86 |
| abstract_inverted_index.derived. | 110 |
| abstract_inverted_index.detector | 72 |
| abstract_inverted_index.embedded | 10 |
| abstract_inverted_index.one-step | 50 |
| abstract_inverted_index.provided | 83 |
| abstract_inverted_index.training | 36 |
| abstract_inverted_index.two-step | 56 |
| abstract_inverted_index.Moreover, | 40 |
| abstract_inverted_index.addresses | 2 |
| abstract_inverted_index.criteria, | 60 |
| abstract_inverted_index.detecting | 6 |
| abstract_inverted_index.detection | 106 |
| abstract_inverted_index.detectors | 45, 84 |
| abstract_inverted_index.frequency | 20 |
| abstract_inverted_index.numerical | 122 |
| abstract_inverted_index.obtaining | 32 |
| abstract_inverted_index.(FDA-MIMO) | 25 |
| abstract_inverted_index.accordance | 47 |
| abstract_inverted_index.algorithms | 120 |
| abstract_inverted_index.available. | 39 |
| abstract_inverted_index.covariance | 17, 94 |
| abstract_inverted_index.introduced | 75 |
| abstract_inverted_index.likelihood | 52 |
| abstract_inverted_index.properties | 91 |
| abstract_inverted_index.closed-form | 98 |
| abstract_inverted_index.correctness | 116 |
| abstract_inverted_index.decomposing | 77 |
| abstract_inverted_index.expressions | 99 |
| abstract_inverted_index.generalized | 51 |
| abstract_inverted_index.probability | 103, 107 |
| abstract_inverted_index.simulations. | 123 |
| abstract_inverted_index.substantiates | 114 |
| abstract_inverted_index.aforementioned | 119 |
| abstract_inverted_index.multiple-input | 23 |
| abstract_inverted_index.multiple-output | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |