Adaptive Temporal Reinforcement Learning for Mapping Complex Maritime Environmental State Spaces in Autonomous Ship Navigation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/jmse13030514
The autonomous decision-making model for ship navigation requires extensive interaction and trial-and-error in real, complex environments to ensure optimal decision-making performance and efficiency across various scenarios. However, existing approaches still encounter significant challenges in addressing the temporal features of state space and tackling complex dynamic collision avoidance tasks, primarily due to factors such as environmental uncertainty, the high dimensionality of the state space, and limited decision robustness. This paper proposes an adaptive temporal decision-making model based on reinforcement learning, which utilizes Long Short-Term Memory (LSTM) networks to capture temporal features of the state space. The model integrates an enhanced Proximal Policy Optimization (PPO) algorithm for efficient policy iteration optimization. Additionally, a simulation training environment is constructed, incorporating multi-factor coupled physical properties and ship dynamics equations. The environment maps variables such as wind speed, current velocity, and wave height, along with dynamic ship parameters, while considering the International Regulations for Preventing Collisions at Sea (COLREGs) in training the autonomous navigation decision-making model. Experimental results demonstrate that, compared to other neural network-based reinforcement learning methods, the proposed model excels in environmental adaptability, collision avoidance success rate, navigation stability, and trajectory optimization. The model’s decision resilience and state-space mapping align with real-world navigation scenarios, significantly improving the autonomous decision-making capability of ships in dynamic sea conditions and providing critical support for the advancement of intelligent shipping.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/jmse13030514
- OA Status
- gold
- Cited By
- 4
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408187672
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408187672Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/jmse13030514Digital Object Identifier
- Title
-
Adaptive Temporal Reinforcement Learning for Mapping Complex Maritime Environmental State Spaces in Autonomous Ship NavigationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-06Full publication date if available
- Authors
-
Ruolan Zhang, Xinyu Qin, Mingyang Pan, Shaoxi Li, Helong ShenList of authors in order
- Landing page
-
https://doi.org/10.3390/jmse13030514Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/jmse13030514Direct OA link when available
- Concepts
-
Reinforcement learning, State (computer science), Computer science, Environmental science, Marine engineering, Artificial intelligence, Environmental resource management, Engineering, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408187672 |
|---|---|
| doi | https://doi.org/10.3390/jmse13030514 |
| ids.doi | https://doi.org/10.3390/jmse13030514 |
| ids.openalex | https://openalex.org/W4408187672 |
| fwci | 12.25311317 |
| type | article |
| title | Adaptive Temporal Reinforcement Learning for Mapping Complex Maritime Environmental State Spaces in Autonomous Ship Navigation |
| awards[0].id | https://openalex.org/G1603107672 |
| awards[0].funder_id | https://openalex.org/F4320336589 |
| awards[0].display_name | |
| awards[0].funder_award_id | GUIKE AA23062052-03 |
| awards[0].funder_display_name | Guangxi Key Research and Development Program |
| biblio.issue | 3 |
| biblio.volume | 13 |
| biblio.last_page | 514 |
| biblio.first_page | 514 |
| topics[0].id | https://openalex.org/T11622 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Maritime Navigation and Safety |
| topics[1].id | https://openalex.org/T11192 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Underwater Vehicles and Communication Systems |
| topics[2].id | https://openalex.org/T12316 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.978600025177002 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2310 |
| topics[2].subfield.display_name | Pollution |
| topics[2].display_name | Oil Spill Detection and Mitigation |
| funders[0].id | https://openalex.org/F4320336589 |
| funders[0].ror | |
| funders[0].display_name | Guangxi Key Research and Development Program |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7806288599967957 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C48103436 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5128810405731201 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[1].display_name | State (computer science) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4560752213001251 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.41325005888938904 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C199104240 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34534952044487 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q118291 |
| concepts[4].display_name | Marine engineering |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.33625805377960205 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C107826830 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32354581356048584 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q929380 |
| concepts[6].display_name | Environmental resource management |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2413882613182068 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7806288599967957 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/state |
| keywords[1].score | 0.5128810405731201 |
| keywords[1].display_name | State (computer science) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4560752213001251 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.41325005888938904 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/marine-engineering |
| keywords[4].score | 0.34534952044487 |
| keywords[4].display_name | Marine engineering |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.33625805377960205 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/environmental-resource-management |
| keywords[6].score | 0.32354581356048584 |
| keywords[6].display_name | Environmental resource management |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.2413882613182068 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/jmse13030514 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736865057 |
| locations[0].source.issn | 2077-1312 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-1312 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Marine Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Marine Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.3390/jmse13030514 |
| locations[1].id | pmh:oai:doaj.org/article:9f02f56c86b04d31a6e0461b267f7ca3 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Marine Science and Engineering, Vol 13, Iss 3, p 514 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/9f02f56c86b04d31a6e0461b267f7ca3 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5070741963 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6636-3734 |
| authorships[0].author.display_name | Ruolan Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[0].affiliations[0].raw_affiliation_string | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[0].institutions[0].id | https://openalex.org/I43313876 |
| authorships[0].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dalian Maritime University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruolan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[1].author.id | https://openalex.org/A5082441424 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-8586-2260 |
| authorships[1].author.display_name | Xinyu Qin |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[1].affiliations[0].raw_affiliation_string | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[1].institutions[0].id | https://openalex.org/I43313876 |
| authorships[1].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Dalian Maritime University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinyu Qin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[2].author.id | https://openalex.org/A5063170334 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1327-6105 |
| authorships[2].author.display_name | Mingyang Pan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[2].affiliations[0].raw_affiliation_string | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[2].institutions[0].id | https://openalex.org/I43313876 |
| authorships[2].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Dalian Maritime University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mingyang Pan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[3].author.id | https://openalex.org/A5034733148 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9394-6142 |
| authorships[3].author.display_name | Shaoxi Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[3].affiliations[0].raw_affiliation_string | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[3].institutions[0].id | https://openalex.org/I43313876 |
| authorships[3].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Dalian Maritime University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shaoxi Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[4].author.id | https://openalex.org/A5078357728 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3799-3582 |
| authorships[4].author.display_name | Helong Shen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[4].affiliations[0].raw_affiliation_string | Navigation College, Dalian Maritime University, Dalian 116026, China |
| authorships[4].institutions[0].id | https://openalex.org/I43313876 |
| authorships[4].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Dalian Maritime University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Helong Shen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Navigation College, Dalian Maritime University, Dalian 116026, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/jmse13030514 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adaptive Temporal Reinforcement Learning for Mapping Complex Maritime Environmental State Spaces in Autonomous Ship Navigation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11622 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Maritime Navigation and Safety |
| related_works | https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W3084456289, https://openalex.org/W2024136090, https://openalex.org/W4391331176, https://openalex.org/W2031695474, https://openalex.org/W2586732548, https://openalex.org/W2964765435 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/jmse13030514 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736865057 |
| best_oa_location.source.issn | 2077-1312 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-1312 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Marine Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Marine Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/jmse13030514 |
| primary_location.id | doi:10.3390/jmse13030514 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736865057 |
| primary_location.source.issn | 2077-1312 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-1312 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Marine Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Marine Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.3390/jmse13030514 |
| publication_date | 2025-03-06 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6788300197, https://openalex.org/W2043365244, https://openalex.org/W4403684052, https://openalex.org/W1976839759, https://openalex.org/W2956478786, https://openalex.org/W2999128477, https://openalex.org/W3092867239, https://openalex.org/W4285082317, https://openalex.org/W2132976537, https://openalex.org/W4312825636, https://openalex.org/W2556122738, https://openalex.org/W2040922783, https://openalex.org/W2023810477, https://openalex.org/W1988484739, https://openalex.org/W6665919855, https://openalex.org/W1974854420, https://openalex.org/W2484617215, https://openalex.org/W2735167595, https://openalex.org/W4390086644, https://openalex.org/W2970414985, https://openalex.org/W4313364788, https://openalex.org/W4400351808, https://openalex.org/W2963604378, https://openalex.org/W3047221759, https://openalex.org/W3005337831, https://openalex.org/W3174645049, https://openalex.org/W2979089101, https://openalex.org/W3131678030, https://openalex.org/W2999840070, https://openalex.org/W3206041612, https://openalex.org/W4211249640, https://openalex.org/W3206465908, https://openalex.org/W4317535619, https://openalex.org/W4386630145, https://openalex.org/W4309728858, https://openalex.org/W4313590856, https://openalex.org/W4200534373, https://openalex.org/W3128262367, https://openalex.org/W3128019105, https://openalex.org/W3099217732, https://openalex.org/W4255856646, https://openalex.org/W2061611589 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 110 |
| abstract_inverted_index.an | 70, 97 |
| abstract_inverted_index.as | 53, 130 |
| abstract_inverted_index.at | 151 |
| abstract_inverted_index.in | 12, 33, 154, 177, 209 |
| abstract_inverted_index.is | 114 |
| abstract_inverted_index.of | 38, 59, 90, 207, 220 |
| abstract_inverted_index.on | 76 |
| abstract_inverted_index.to | 16, 50, 86, 166 |
| abstract_inverted_index.Sea | 152 |
| abstract_inverted_index.The | 0, 94, 125, 189 |
| abstract_inverted_index.and | 10, 21, 41, 63, 121, 135, 186, 193, 213 |
| abstract_inverted_index.due | 49 |
| abstract_inverted_index.for | 4, 104, 148, 217 |
| abstract_inverted_index.sea | 211 |
| abstract_inverted_index.the | 35, 56, 60, 91, 145, 156, 173, 203, 218 |
| abstract_inverted_index.Long | 81 |
| abstract_inverted_index.This | 67 |
| abstract_inverted_index.high | 57 |
| abstract_inverted_index.maps | 127 |
| abstract_inverted_index.ship | 5, 122, 141 |
| abstract_inverted_index.such | 52, 129 |
| abstract_inverted_index.wave | 136 |
| abstract_inverted_index.wind | 131 |
| abstract_inverted_index.with | 139, 197 |
| abstract_inverted_index.(PPO) | 102 |
| abstract_inverted_index.align | 196 |
| abstract_inverted_index.along | 138 |
| abstract_inverted_index.based | 75 |
| abstract_inverted_index.model | 3, 74, 95, 175 |
| abstract_inverted_index.other | 167 |
| abstract_inverted_index.paper | 68 |
| abstract_inverted_index.rate, | 183 |
| abstract_inverted_index.real, | 13 |
| abstract_inverted_index.ships | 208 |
| abstract_inverted_index.space | 40 |
| abstract_inverted_index.state | 39, 61, 92 |
| abstract_inverted_index.still | 29 |
| abstract_inverted_index.that, | 164 |
| abstract_inverted_index.which | 79 |
| abstract_inverted_index.while | 143 |
| abstract_inverted_index.(LSTM) | 84 |
| abstract_inverted_index.Memory | 83 |
| abstract_inverted_index.Policy | 100 |
| abstract_inverted_index.across | 23 |
| abstract_inverted_index.ensure | 17 |
| abstract_inverted_index.excels | 176 |
| abstract_inverted_index.model. | 160 |
| abstract_inverted_index.neural | 168 |
| abstract_inverted_index.policy | 106 |
| abstract_inverted_index.space, | 62 |
| abstract_inverted_index.space. | 93 |
| abstract_inverted_index.speed, | 132 |
| abstract_inverted_index.tasks, | 47 |
| abstract_inverted_index.capture | 87 |
| abstract_inverted_index.complex | 14, 43 |
| abstract_inverted_index.coupled | 118 |
| abstract_inverted_index.current | 133 |
| abstract_inverted_index.dynamic | 44, 140, 210 |
| abstract_inverted_index.factors | 51 |
| abstract_inverted_index.height, | 137 |
| abstract_inverted_index.limited | 64 |
| abstract_inverted_index.mapping | 195 |
| abstract_inverted_index.optimal | 18 |
| abstract_inverted_index.results | 162 |
| abstract_inverted_index.success | 182 |
| abstract_inverted_index.support | 216 |
| abstract_inverted_index.various | 24 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.Proximal | 99 |
| abstract_inverted_index.adaptive | 71 |
| abstract_inverted_index.compared | 165 |
| abstract_inverted_index.critical | 215 |
| abstract_inverted_index.decision | 65, 191 |
| abstract_inverted_index.dynamics | 123 |
| abstract_inverted_index.enhanced | 98 |
| abstract_inverted_index.existing | 27 |
| abstract_inverted_index.features | 37, 89 |
| abstract_inverted_index.learning | 171 |
| abstract_inverted_index.methods, | 172 |
| abstract_inverted_index.networks | 85 |
| abstract_inverted_index.physical | 119 |
| abstract_inverted_index.proposed | 174 |
| abstract_inverted_index.proposes | 69 |
| abstract_inverted_index.requires | 7 |
| abstract_inverted_index.tackling | 42 |
| abstract_inverted_index.temporal | 36, 72, 88 |
| abstract_inverted_index.training | 112, 155 |
| abstract_inverted_index.utilizes | 80 |
| abstract_inverted_index.(COLREGs) | 153 |
| abstract_inverted_index.algorithm | 103 |
| abstract_inverted_index.avoidance | 46, 181 |
| abstract_inverted_index.collision | 45, 180 |
| abstract_inverted_index.efficient | 105 |
| abstract_inverted_index.encounter | 30 |
| abstract_inverted_index.extensive | 8 |
| abstract_inverted_index.improving | 202 |
| abstract_inverted_index.iteration | 107 |
| abstract_inverted_index.learning, | 78 |
| abstract_inverted_index.model’s | 190 |
| abstract_inverted_index.primarily | 48 |
| abstract_inverted_index.providing | 214 |
| abstract_inverted_index.shipping. | 222 |
| abstract_inverted_index.variables | 128 |
| abstract_inverted_index.velocity, | 134 |
| abstract_inverted_index.Collisions | 150 |
| abstract_inverted_index.Preventing | 149 |
| abstract_inverted_index.Short-Term | 82 |
| abstract_inverted_index.addressing | 34 |
| abstract_inverted_index.approaches | 28 |
| abstract_inverted_index.autonomous | 1, 157, 204 |
| abstract_inverted_index.capability | 206 |
| abstract_inverted_index.challenges | 32 |
| abstract_inverted_index.conditions | 212 |
| abstract_inverted_index.efficiency | 22 |
| abstract_inverted_index.equations. | 124 |
| abstract_inverted_index.integrates | 96 |
| abstract_inverted_index.navigation | 6, 158, 184, 199 |
| abstract_inverted_index.properties | 120 |
| abstract_inverted_index.real-world | 198 |
| abstract_inverted_index.resilience | 192 |
| abstract_inverted_index.scenarios, | 200 |
| abstract_inverted_index.scenarios. | 25 |
| abstract_inverted_index.simulation | 111 |
| abstract_inverted_index.stability, | 185 |
| abstract_inverted_index.trajectory | 187 |
| abstract_inverted_index.Regulations | 147 |
| abstract_inverted_index.advancement | 219 |
| abstract_inverted_index.considering | 144 |
| abstract_inverted_index.demonstrate | 163 |
| abstract_inverted_index.environment | 113, 126 |
| abstract_inverted_index.intelligent | 221 |
| abstract_inverted_index.interaction | 9 |
| abstract_inverted_index.parameters, | 142 |
| abstract_inverted_index.performance | 20 |
| abstract_inverted_index.robustness. | 66 |
| abstract_inverted_index.significant | 31 |
| abstract_inverted_index.state-space | 194 |
| abstract_inverted_index.Experimental | 161 |
| abstract_inverted_index.Optimization | 101 |
| abstract_inverted_index.constructed, | 115 |
| abstract_inverted_index.environments | 15 |
| abstract_inverted_index.multi-factor | 117 |
| abstract_inverted_index.uncertainty, | 55 |
| abstract_inverted_index.Additionally, | 109 |
| abstract_inverted_index.International | 146 |
| abstract_inverted_index.adaptability, | 179 |
| abstract_inverted_index.environmental | 54, 178 |
| abstract_inverted_index.incorporating | 116 |
| abstract_inverted_index.network-based | 169 |
| abstract_inverted_index.optimization. | 108, 188 |
| abstract_inverted_index.reinforcement | 77, 170 |
| abstract_inverted_index.significantly | 201 |
| abstract_inverted_index.dimensionality | 58 |
| abstract_inverted_index.decision-making | 2, 19, 73, 159, 205 |
| abstract_inverted_index.trial-and-error | 11 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.96497723 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |