Additional file 4 of iRDA: a new filter towards predictive, stable, and enriched candidate genes Article Swipe
Hung-Ming Lai
,
Andreas Albrecht
,
Kathleen Steinhรถfel
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.c.3625577_d7
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.c.3625577_d7
Table S4. Parsimonious gene sets of MCC performance. The file provides all the gene sets of four filters over eleven datasets based on MCC measurement from Tables 5 and 7. (XLSX 19 kb)
Related Topics
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.c.3625577_d7
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394137029
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394137029Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.c.3625577_d7Digital Object Identifier
- Title
-
Additional file 4 of iRDA: a new filter towards predictive, stable, and enriched candidate genesWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Hung-Ming Lai, Andreas Albrecht, Kathleen SteinhรถfelList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.c.3625577_d7Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.c.3625577_d7Direct OA link when available
- Concepts
-
Filter (signal processing), Computer science, Computational biology, Biology, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394137029 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.c.3625577_d7 |
| ids.doi | https://doi.org/10.6084/m9.figshare.c.3625577_d7 |
| ids.openalex | https://openalex.org/W4394137029 |
| fwci | |
| type | dataset |
| title | Additional file 4 of iRDA: a new filter towards predictive, stable, and enriched candidate genes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11287 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.4009999930858612 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1306 |
| topics[0].subfield.display_name | Cancer Research |
| topics[0].display_name | Cancer Genomics and Diagnostics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C106131492 |
| concepts[0].level | 2 |
| concepts[0].score | 0.4750005006790161 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[0].display_name | Filter (signal processing) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.365367591381073 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3263089656829834 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.2840889096260071 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.13882726430892944 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/filter |
| keywords[0].score | 0.4750005006790161 |
| keywords[0].display_name | Filter (signal processing) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.365367591381073 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.3263089656829834 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.2840889096260071 |
| keywords[3].display_name | Biology |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.13882726430892944 |
| keywords[4].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.c.3625577_d7 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.c.3625577_d7 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5088479280 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hung-Ming Lai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hung-Ming Lai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029149047 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9813-4319 |
| authorships[1].author.display_name | Andreas Albrecht |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andreas Albrecht |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5095018051 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kathleen Steinhรถfel |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kathleen Steinhรถfel |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.c.3625577_d7 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Additional file 4 of iRDA: a new filter towards predictive, stable, and enriched candidate genes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11287 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.4009999930858612 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1306 |
| primary_topic.subfield.display_name | Cancer Research |
| primary_topic.display_name | Cancer Genomics and Diagnostics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.c.3625577_d7 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.c.3625577_d7 |
| primary_location.id | doi:10.6084/m9.figshare.c.3625577_d7 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.c.3625577_d7 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 27 |
| abstract_inverted_index.19 | 31 |
| abstract_inverted_index.7. | 29 |
| abstract_inverted_index.of | 5, 15 |
| abstract_inverted_index.on | 22 |
| abstract_inverted_index.MCC | 6, 23 |
| abstract_inverted_index.S4. | 1 |
| abstract_inverted_index.The | 8 |
| abstract_inverted_index.all | 11 |
| abstract_inverted_index.and | 28 |
| abstract_inverted_index.kb) | 32 |
| abstract_inverted_index.the | 12 |
| abstract_inverted_index.file | 9 |
| abstract_inverted_index.four | 16 |
| abstract_inverted_index.from | 25 |
| abstract_inverted_index.gene | 3, 13 |
| abstract_inverted_index.over | 18 |
| abstract_inverted_index.sets | 4, 14 |
| abstract_inverted_index.(XLSX | 30 |
| abstract_inverted_index.Table | 0 |
| abstract_inverted_index.based | 21 |
| abstract_inverted_index.Tables | 26 |
| abstract_inverted_index.eleven | 19 |
| abstract_inverted_index.filters | 17 |
| abstract_inverted_index.datasets | 20 |
| abstract_inverted_index.provides | 10 |
| abstract_inverted_index.measurement | 24 |
| abstract_inverted_index.Parsimonious | 2 |
| abstract_inverted_index.performance. | 7 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |