Additive Manufacturing for Next-Generation Batteries: Opportunities, Challenges, and Future Outlook Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/app152211907
· OA: W4416066328
The elevated needs for high-performance energy storage, dictated by electrification, renewable sources integration, and the global increase in interconnected devices, have placed batteries to the forefront of technological research. Additive manufacturing is increasingly recognized as a compelling approach to advance battery research and application by enabling tailored control over design, pore geometry, materials, and integration. This perspective work examines the opportunities and challenges associated with utilizing additive manufacturing as an enabling battery manufacturing technology. Recent advances in the additive fabrication of electrodes, electrolytes, separators, and integrated devices are examined, exhibiting the potential to acheive electrochemical performance, design adaptability, and sustainability. At the same time, key challenges—including materials formulation, reproducibility, economic feasibility, and regulatory uncertainty—are discussed as limiting factors that must be addressed for achieving the expected results. Rather than being viewed as a replacement for conventional gigafactory-scale production, additive manufacturing is positioned as a complementary fabrication technique that can deliver value in niche, distributed, and application-specific contexts. This work concludes by outlining research and policy priorities that could accelerate the maturation of 3D-printed batteries, stressing the importance of hybrid manufacturing, multifunctional printable materials, circular economy integration, and carefully phased timelines for deployment. Moreover, by enabling customized form factors, improved device–user interfaces, and seamless integration into smart, automated environments, additive manufacturing has the potential to significantly enhance user experience across emerging battery applications. In this context, this perspective provides a grounded assessment of how additive fabrication methods may contribute to next-generation battery technologies that not only improve electrochemical performance but also enhance user interaction, reliability, and seamless integration within automated and control-driven systems.