ADF-LoRA: Alternating Low-Rank Aggregation for Decentralized Federated Fine-Tuning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.18291
This paper revisits alternating low-rank updates for federated fine-tuning and examines their behavior in decentralized federated learning (DFL). While alternating the LoRA matrices has been shown to stabilize aggregation in centralized FL, extending this mechanism to decentralized, peer-to-peer communication introduces new challenges due to phase-state mismatch and block-wise divergence across clients. We introduce ADF-LoRA, which synchronizes the update of only one low-rank matrix per round and mixes both matrices to maintain more consistent parameter states under decentralized propagation. This design preserves the cross-term suppression effect of alternating updates while improving stability in serverless topologies. We provide a convergence analysis under standard smoothness assumptions and evaluate ADF-LoRA on multiple GLUE tasks. Experiments show that ADF-LoRA achieves faster and smoother convergence and delivers the highest average accuracy across tasks, outperforming existing LoRA variants in decentralized FL by a consistent margin.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2511.18291
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106647550
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106647550Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.18291Digital Object Identifier
- Title
-
ADF-LoRA: Alternating Low-Rank Aggregation for Decentralized Federated Fine-TuningWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-23Full publication date if available
- Authors
-
Wang Xiaoyu, Li Xiaotian, Zhou Zhixiang, Li Chen, Liu, YongList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2511.18291Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2511.18291Direct OA link when available
- Concepts
-
Computer science, Convergence (economics), Stability (learning theory), Divergence (linguistics), Smoothness, Distributed computing, Decentralised system, Matrix (chemical analysis), Mechanism (biology), Mathematical optimization, Federated learning, State (computer science), Sequence (biology), Theoretical computer science, Scheme (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106647550 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.18291 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.18291 |
| ids.openalex | https://openalex.org/W7106647550 |
| fwci | |
| type | preprint |
| title | ADF-LoRA: Alternating Low-Rank Aggregation for Decentralized Federated Fine-Tuning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7617626190185547 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777303404 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7296432256698608 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[1].display_name | Convergence (economics) |
| concepts[2].id | https://openalex.org/C112972136 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5864784121513367 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[2].display_name | Stability (learning theory) |
| concepts[3].id | https://openalex.org/C207390915 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5207406878471375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[3].display_name | Divergence (linguistics) |
| concepts[4].id | https://openalex.org/C102634674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5159288644790649 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q868473 |
| concepts[4].display_name | Smoothness |
| concepts[5].id | https://openalex.org/C120314980 |
| concepts[5].level | 1 |
| concepts[5].score | 0.515843391418457 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[5].display_name | Distributed computing |
| concepts[6].id | https://openalex.org/C205875254 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4048011004924774 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17156857 |
| concepts[6].display_name | Decentralised system |
| concepts[7].id | https://openalex.org/C106487976 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3875787556171417 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[7].display_name | Matrix (chemical analysis) |
| concepts[8].id | https://openalex.org/C89611455 |
| concepts[8].level | 2 |
| concepts[8].score | 0.34745675325393677 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[8].display_name | Mechanism (biology) |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3005238473415375 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C2992525071 |
| concepts[10].level | 2 |
| concepts[10].score | 0.30017101764678955 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q50818671 |
| concepts[10].display_name | Federated learning |
| concepts[11].id | https://openalex.org/C48103436 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2937595248222351 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[11].display_name | State (computer science) |
| concepts[12].id | https://openalex.org/C2778112365 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2858316898345947 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[12].display_name | Sequence (biology) |
| concepts[13].id | https://openalex.org/C80444323 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2704944908618927 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[13].display_name | Theoretical computer science |
| concepts[14].id | https://openalex.org/C77618280 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2644764482975006 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[14].display_name | Scheme (mathematics) |
| keywords[0].id | https://openalex.org/keywords/convergence |
| keywords[0].score | 0.7296432256698608 |
| keywords[0].display_name | Convergence (economics) |
| keywords[1].id | https://openalex.org/keywords/stability |
| keywords[1].score | 0.5864784121513367 |
| keywords[1].display_name | Stability (learning theory) |
| keywords[2].id | https://openalex.org/keywords/divergence |
| keywords[2].score | 0.5207406878471375 |
| keywords[2].display_name | Divergence (linguistics) |
| keywords[3].id | https://openalex.org/keywords/smoothness |
| keywords[3].score | 0.5159288644790649 |
| keywords[3].display_name | Smoothness |
| keywords[4].id | https://openalex.org/keywords/decentralised-system |
| keywords[4].score | 0.4048011004924774 |
| keywords[4].display_name | Decentralised system |
| keywords[5].id | https://openalex.org/keywords/matrix |
| keywords[5].score | 0.3875787556171417 |
| keywords[5].display_name | Matrix (chemical analysis) |
| language | |
| locations[0].id | doi:10.48550/arxiv.2511.18291 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2511.18291 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A1778731936 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-2908-5275 |
| authorships[0].author.display_name | Wang Xiaoyu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Xiaoyu |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2231158419 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Li Xiaotian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Xiaotian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2025250459 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhou Zhixiang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhou, Zhixiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A1971984624 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5187-0928 |
| authorships[3].author.display_name | Li Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Chen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A2058749718 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0228-8971 |
| authorships[4].author.display_name | Liu, Yong |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Liu, Yong |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2511.18291 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-27T00:00:00 |
| display_name | ADF-LoRA: Alternating Low-Rank Aggregation for Decentralized Federated Fine-Tuning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-27T01:16:37.896743 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2511.18291 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.18291 |
| primary_location.id | doi:10.48550/arxiv.2511.18291 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.18291 |
| publication_date | 2025-11-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 96, 135 |
| abstract_inverted_index.FL | 133 |
| abstract_inverted_index.We | 51, 94 |
| abstract_inverted_index.by | 134 |
| abstract_inverted_index.in | 13, 29, 91, 131 |
| abstract_inverted_index.of | 58, 85 |
| abstract_inverted_index.on | 106 |
| abstract_inverted_index.to | 26, 35, 43, 69 |
| abstract_inverted_index.FL, | 31 |
| abstract_inverted_index.and | 9, 46, 65, 103, 116, 119 |
| abstract_inverted_index.due | 42 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.has | 23 |
| abstract_inverted_index.new | 40 |
| abstract_inverted_index.one | 60 |
| abstract_inverted_index.per | 63 |
| abstract_inverted_index.the | 20, 56, 81, 121 |
| abstract_inverted_index.GLUE | 108 |
| abstract_inverted_index.LoRA | 21, 129 |
| abstract_inverted_index.This | 0, 78 |
| abstract_inverted_index.been | 24 |
| abstract_inverted_index.both | 67 |
| abstract_inverted_index.more | 71 |
| abstract_inverted_index.only | 59 |
| abstract_inverted_index.show | 111 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.While | 18 |
| abstract_inverted_index.mixes | 66 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.round | 64 |
| abstract_inverted_index.shown | 25 |
| abstract_inverted_index.their | 11 |
| abstract_inverted_index.under | 75, 99 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.while | 88 |
| abstract_inverted_index.(DFL). | 17 |
| abstract_inverted_index.across | 49, 125 |
| abstract_inverted_index.design | 79 |
| abstract_inverted_index.effect | 84 |
| abstract_inverted_index.faster | 115 |
| abstract_inverted_index.matrix | 62 |
| abstract_inverted_index.states | 74 |
| abstract_inverted_index.tasks, | 126 |
| abstract_inverted_index.tasks. | 109 |
| abstract_inverted_index.update | 57 |
| abstract_inverted_index.average | 123 |
| abstract_inverted_index.highest | 122 |
| abstract_inverted_index.margin. | 137 |
| abstract_inverted_index.provide | 95 |
| abstract_inverted_index.updates | 5, 87 |
| abstract_inverted_index.ADF-LoRA | 105, 113 |
| abstract_inverted_index.accuracy | 124 |
| abstract_inverted_index.achieves | 114 |
| abstract_inverted_index.analysis | 98 |
| abstract_inverted_index.behavior | 12 |
| abstract_inverted_index.clients. | 50 |
| abstract_inverted_index.delivers | 120 |
| abstract_inverted_index.evaluate | 104 |
| abstract_inverted_index.examines | 10 |
| abstract_inverted_index.existing | 128 |
| abstract_inverted_index.learning | 16 |
| abstract_inverted_index.low-rank | 4, 61 |
| abstract_inverted_index.maintain | 70 |
| abstract_inverted_index.matrices | 22, 68 |
| abstract_inverted_index.mismatch | 45 |
| abstract_inverted_index.multiple | 107 |
| abstract_inverted_index.revisits | 2 |
| abstract_inverted_index.smoother | 117 |
| abstract_inverted_index.standard | 100 |
| abstract_inverted_index.variants | 130 |
| abstract_inverted_index.ADF-LoRA, | 53 |
| abstract_inverted_index.extending | 32 |
| abstract_inverted_index.federated | 7, 15 |
| abstract_inverted_index.improving | 89 |
| abstract_inverted_index.introduce | 52 |
| abstract_inverted_index.mechanism | 34 |
| abstract_inverted_index.parameter | 73 |
| abstract_inverted_index.preserves | 80 |
| abstract_inverted_index.stability | 90 |
| abstract_inverted_index.stabilize | 27 |
| abstract_inverted_index.block-wise | 47 |
| abstract_inverted_index.challenges | 41 |
| abstract_inverted_index.consistent | 72, 136 |
| abstract_inverted_index.cross-term | 82 |
| abstract_inverted_index.divergence | 48 |
| abstract_inverted_index.introduces | 39 |
| abstract_inverted_index.serverless | 92 |
| abstract_inverted_index.smoothness | 101 |
| abstract_inverted_index.Experiments | 110 |
| abstract_inverted_index.aggregation | 28 |
| abstract_inverted_index.alternating | 3, 19, 86 |
| abstract_inverted_index.assumptions | 102 |
| abstract_inverted_index.centralized | 30 |
| abstract_inverted_index.convergence | 97, 118 |
| abstract_inverted_index.fine-tuning | 8 |
| abstract_inverted_index.phase-state | 44 |
| abstract_inverted_index.suppression | 83 |
| abstract_inverted_index.topologies. | 93 |
| abstract_inverted_index.peer-to-peer | 37 |
| abstract_inverted_index.propagation. | 77 |
| abstract_inverted_index.synchronizes | 55 |
| abstract_inverted_index.communication | 38 |
| abstract_inverted_index.decentralized | 14, 76, 132 |
| abstract_inverted_index.outperforming | 127 |
| abstract_inverted_index.decentralized, | 36 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |