ADFilter—A Web Tool for New Physics Searches with Autoencoder-Based Anomaly Detection Using Deep Unsupervised Neural Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/info16040258
A web-based tool called ADFilter (short for Anomaly Detection Filter) was developed to process collision events using autoencoders based on a deep unsupervised neural network. The autoencoders are trained on a small fraction of either collision data or Standard Model (SM) Monte Carlo simulations. The tool calculates loss distributions for input events, helping to determine the degree to which the events can be considered anomalous with respect to the SM events used for training. Therefore, it can be used for new physics searches in collider experiments. Real-life examples are provided to demonstrate how the tool can be used to reinterpret existing results from the Large Hadron Collider (LHC), with the goal of significantly improving exclusion limits. This tool is expected to mitigate the “reproducibility crisis” associated with various machine learning techniques, as it can incorporate machine learning approaches from third-party publications, making them accessible to the general public.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/info16040258
- https://www.mdpi.com/2078-2489/16/4/258/pdf?version=1742631326
- OA Status
- gold
- Cited By
- 1
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408774938
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408774938Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/info16040258Digital Object Identifier
- Title
-
ADFilter—A Web Tool for New Physics Searches with Autoencoder-Based Anomaly Detection Using Deep Unsupervised Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-22Full publication date if available
- Authors
-
S. Chekanov, W. Islam, R. Zhang, N. A. LuongoList of authors in order
- Landing page
-
https://doi.org/10.3390/info16040258Publisher landing page
- PDF URL
-
https://www.mdpi.com/2078-2489/16/4/258/pdf?version=1742631326Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2078-2489/16/4/258/pdf?version=1742631326Direct OA link when available
- Concepts
-
Autoencoder, Anomaly detection, Artificial neural network, Anomaly (physics), Artificial intelligence, Unsupervised learning, Deep neural networks, Computer science, Pattern recognition (psychology), Physics, Condensed matter physicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408774938 |
|---|---|
| doi | https://doi.org/10.3390/info16040258 |
| ids.doi | https://doi.org/10.3390/info16040258 |
| ids.openalex | https://openalex.org/W4408774938 |
| fwci | 2.91341089 |
| type | article |
| title | ADFilter—A Web Tool for New Physics Searches with Autoencoder-Based Anomaly Detection Using Deep Unsupervised Neural Networks |
| biblio.issue | 4 |
| biblio.volume | 16 |
| biblio.last_page | 258 |
| biblio.first_page | 258 |
| topics[0].id | https://openalex.org/T10048 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Particle physics theoretical and experimental studies |
| topics[1].id | https://openalex.org/T13650 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Computational Physics and Python Applications |
| topics[2].id | https://openalex.org/T11044 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.979200005531311 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | Particle Detector Development and Performance |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.927959680557251 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C739882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7337755560874939 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[1].display_name | Anomaly detection |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5856524705886841 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C12997251 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5609872341156006 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[3].display_name | Anomaly (physics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5473468899726868 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C8038995 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47785088419914246 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[5].display_name | Unsupervised learning |
| concepts[6].id | https://openalex.org/C2984842247 |
| concepts[6].level | 3 |
| concepts[6].score | 0.44292593002319336 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep neural networks |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.43712881207466125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.37106651067733765 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2839673161506653 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C26873012 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[10].display_name | Condensed matter physics |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.927959680557251 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/anomaly-detection |
| keywords[1].score | 0.7337755560874939 |
| keywords[1].display_name | Anomaly detection |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5856524705886841 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/anomaly |
| keywords[3].score | 0.5609872341156006 |
| keywords[3].display_name | Anomaly (physics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5473468899726868 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[5].score | 0.47785088419914246 |
| keywords[5].display_name | Unsupervised learning |
| keywords[6].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[6].score | 0.44292593002319336 |
| keywords[6].display_name | Deep neural networks |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.43712881207466125 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.37106651067733765 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.2839673161506653 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/info16040258 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219776 |
| locations[0].source.issn | 2078-2489 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2078-2489 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Information |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2078-2489/16/4/258/pdf?version=1742631326 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information |
| locations[0].landing_page_url | https://doi.org/10.3390/info16040258 |
| locations[1].id | pmh:oai:doaj.org/article:1a4888bb596e49d7986e9d03e5052c90 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Information, Vol 16, Iss 4, p 258 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/1a4888bb596e49d7986e9d03e5052c90 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5040574546 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7314-7247 |
| authorships[0].author.display_name | S. Chekanov |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1282105669 |
| authorships[0].affiliations[0].raw_affiliation_string | HEP Division, Argonne National Laboratory, Lemont, IL 60439, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1282105669 |
| authorships[0].institutions[0].ror | https://ror.org/05gvnxz63 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1282105669, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I40347166 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Argonne National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sergei V. Chekanov |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | HEP Division, Argonne National Laboratory, Lemont, IL 60439, USA |
| authorships[1].author.id | https://openalex.org/A5080699493 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5624-5934 |
| authorships[1].author.display_name | W. Islam |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Physics, University of Wisconsin, Madison, WI 53706, USA |
| authorships[1].institutions[0].id | https://openalex.org/I135310074 |
| authorships[1].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wasikul Islam |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Physics, University of Wisconsin, Madison, WI 53706, USA |
| authorships[2].author.id | https://openalex.org/A5108009222 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8265-474X |
| authorships[2].author.display_name | R. Zhang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Physics, University of Wisconsin, Madison, WI 53706, USA |
| authorships[2].institutions[0].id | https://openalex.org/I135310074 |
| authorships[2].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rui Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Physics, University of Wisconsin, Madison, WI 53706, USA |
| authorships[3].author.id | https://openalex.org/A5105646435 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6527-0253 |
| authorships[3].author.display_name | N. A. Luongo |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1282105669 |
| authorships[3].affiliations[0].raw_affiliation_string | HEP Division, Argonne National Laboratory, Lemont, IL 60439, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1282105669 |
| authorships[3].institutions[0].ror | https://ror.org/05gvnxz63 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1282105669, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I40347166 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Argonne National Laboratory |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Nicholas Luongo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | HEP Division, Argonne National Laboratory, Lemont, IL 60439, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2078-2489/16/4/258/pdf?version=1742631326 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ADFilter—A Web Tool for New Physics Searches with Autoencoder-Based Anomaly Detection Using Deep Unsupervised Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10048 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Particle physics theoretical and experimental studies |
| related_works | https://openalex.org/W3186512740, https://openalex.org/W4363671829, https://openalex.org/W2780476542, https://openalex.org/W2806741695, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037, https://openalex.org/W2667207928 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/info16040258 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219776 |
| best_oa_location.source.issn | 2078-2489 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2078-2489 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Information |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2078-2489/16/4/258/pdf?version=1742631326 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information |
| best_oa_location.landing_page_url | https://doi.org/10.3390/info16040258 |
| primary_location.id | doi:10.3390/info16040258 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219776 |
| primary_location.source.issn | 2078-2489 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2078-2489 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Information |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2078-2489/16/4/258/pdf?version=1742631326 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information |
| primary_location.landing_page_url | https://doi.org/10.3390/info16040258 |
| publication_date | 2025-03-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2898368195, https://openalex.org/W4404071072, https://openalex.org/W4390988178, https://openalex.org/W4404268360, https://openalex.org/W4401981535, https://openalex.org/W4297008839, https://openalex.org/W4392643774, https://openalex.org/W2807460800, https://openalex.org/W2163097950, https://openalex.org/W4231325676, https://openalex.org/W1987435915, https://openalex.org/W2050549943, https://openalex.org/W1681355092, https://openalex.org/W1980726110, https://openalex.org/W2037246595, https://openalex.org/W2110999179, https://openalex.org/W2100507804, https://openalex.org/W2165037242, https://openalex.org/W6713134421, https://openalex.org/W3011531154, https://openalex.org/W2609911740, https://openalex.org/W1789670644, https://openalex.org/W3102511029, https://openalex.org/W3105681593 |
| referenced_works_count | 24 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 20, 30 |
| abstract_inverted_index.SM | 69 |
| abstract_inverted_index.as | 131 |
| abstract_inverted_index.be | 62, 77, 96 |
| abstract_inverted_index.in | 83 |
| abstract_inverted_index.is | 118 |
| abstract_inverted_index.it | 75, 132 |
| abstract_inverted_index.of | 33, 111 |
| abstract_inverted_index.on | 19, 29 |
| abstract_inverted_index.or | 37 |
| abstract_inverted_index.to | 12, 53, 57, 67, 90, 98, 120, 144 |
| abstract_inverted_index.The | 25, 44 |
| abstract_inverted_index.are | 27, 88 |
| abstract_inverted_index.can | 61, 76, 95, 133 |
| abstract_inverted_index.for | 6, 49, 72, 79 |
| abstract_inverted_index.how | 92 |
| abstract_inverted_index.new | 80 |
| abstract_inverted_index.the | 55, 59, 68, 93, 103, 109, 122, 145 |
| abstract_inverted_index.was | 10 |
| abstract_inverted_index.(SM) | 40 |
| abstract_inverted_index.This | 116 |
| abstract_inverted_index.data | 36 |
| abstract_inverted_index.deep | 21 |
| abstract_inverted_index.from | 102, 138 |
| abstract_inverted_index.goal | 110 |
| abstract_inverted_index.loss | 47 |
| abstract_inverted_index.them | 142 |
| abstract_inverted_index.tool | 2, 45, 94, 117 |
| abstract_inverted_index.used | 71, 78, 97 |
| abstract_inverted_index.with | 65, 108, 126 |
| abstract_inverted_index.Carlo | 42 |
| abstract_inverted_index.Large | 104 |
| abstract_inverted_index.Model | 39 |
| abstract_inverted_index.Monte | 41 |
| abstract_inverted_index.based | 18 |
| abstract_inverted_index.input | 50 |
| abstract_inverted_index.small | 31 |
| abstract_inverted_index.using | 16 |
| abstract_inverted_index.which | 58 |
| abstract_inverted_index.(LHC), | 107 |
| abstract_inverted_index.(short | 5 |
| abstract_inverted_index.Hadron | 105 |
| abstract_inverted_index.called | 3 |
| abstract_inverted_index.degree | 56 |
| abstract_inverted_index.either | 34 |
| abstract_inverted_index.events | 15, 60, 70 |
| abstract_inverted_index.making | 141 |
| abstract_inverted_index.neural | 23 |
| abstract_inverted_index.Anomaly | 7 |
| abstract_inverted_index.Filter) | 9 |
| abstract_inverted_index.events, | 51 |
| abstract_inverted_index.general | 146 |
| abstract_inverted_index.helping | 52 |
| abstract_inverted_index.limits. | 115 |
| abstract_inverted_index.machine | 128, 135 |
| abstract_inverted_index.physics | 81 |
| abstract_inverted_index.process | 13 |
| abstract_inverted_index.public. | 147 |
| abstract_inverted_index.respect | 66 |
| abstract_inverted_index.results | 101 |
| abstract_inverted_index.trained | 28 |
| abstract_inverted_index.various | 127 |
| abstract_inverted_index.ADFilter | 4 |
| abstract_inverted_index.Collider | 106 |
| abstract_inverted_index.Standard | 38 |
| abstract_inverted_index.collider | 84 |
| abstract_inverted_index.examples | 87 |
| abstract_inverted_index.existing | 100 |
| abstract_inverted_index.expected | 119 |
| abstract_inverted_index.fraction | 32 |
| abstract_inverted_index.learning | 129, 136 |
| abstract_inverted_index.mitigate | 121 |
| abstract_inverted_index.network. | 24 |
| abstract_inverted_index.provided | 89 |
| abstract_inverted_index.searches | 82 |
| abstract_inverted_index.Detection | 8 |
| abstract_inverted_index.Real-life | 86 |
| abstract_inverted_index.anomalous | 64 |
| abstract_inverted_index.collision | 14, 35 |
| abstract_inverted_index.crisis” | 124 |
| abstract_inverted_index.determine | 54 |
| abstract_inverted_index.developed | 11 |
| abstract_inverted_index.exclusion | 114 |
| abstract_inverted_index.improving | 113 |
| abstract_inverted_index.training. | 73 |
| abstract_inverted_index.web-based | 1 |
| abstract_inverted_index.Therefore, | 74 |
| abstract_inverted_index.accessible | 143 |
| abstract_inverted_index.approaches | 137 |
| abstract_inverted_index.associated | 125 |
| abstract_inverted_index.calculates | 46 |
| abstract_inverted_index.considered | 63 |
| abstract_inverted_index.demonstrate | 91 |
| abstract_inverted_index.incorporate | 134 |
| abstract_inverted_index.reinterpret | 99 |
| abstract_inverted_index.techniques, | 130 |
| abstract_inverted_index.third-party | 139 |
| abstract_inverted_index.autoencoders | 17, 26 |
| abstract_inverted_index.experiments. | 85 |
| abstract_inverted_index.simulations. | 43 |
| abstract_inverted_index.unsupervised | 22 |
| abstract_inverted_index.distributions | 48 |
| abstract_inverted_index.publications, | 140 |
| abstract_inverted_index.significantly | 112 |
| abstract_inverted_index.“reproducibility | 123 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5040574546 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I1282105669 |
| citation_normalized_percentile.value | 0.89581011 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |