Adjoint-Based Projections for Uncertainty Quantification near Stochastically Perturbed Limit Cycles and Tori Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.13429
This paper presents a new boundary-value problem formulation for quantifying uncertainty induced by the presence of small Brownian noise near transversally stable periodic orbits (limit cycles) and quasiperiodic invariant tori of the deterministic dynamical systems obtained in the absence of noise. The formulation uses adjoints to construct a continuous family of transversal hyperplanes that are invariant under the linearized deterministic flow near the limit cycle or quasiperiodic invariant torus. The intersections with each hyperplane of stochastic trajectories that remain near the deterministic cycle or torus over intermediate times may be approximated by a Gaussian distribution whose covariance matrix can be obtained from the solution to the corresponding boundary-value problem. In the case of limit cycles, the analysis improves upon results in the literature through the explicit use of state-space projections, transversality constraints, and symmetry-breaking parameters that ensure uniqueness of the solution despite the lack of hyperbolicity along the limit cycle. These same innovations are then generalized to the case of a quasiperiodic invariant torus of arbitrary dimension. In each case, a closed-form solution to the covariance boundary-value problem is found in terms of a convergent series. The methodology is validated against the results of numerical integration for two examples of stochastically perturbed limit cycles and one example of a stochastically perturbed two-dimensional quasiperiodic invariant torus. Finally, an implementation of the covariance boundary-value problem in the numerical continuation package coco is applied to analyze the small-noise limit near a two-dimensional quasiperiodic invariant torus in a nonlinear deterministic dynamical system in $\mathbb{R}^4$ that does not support closed-form analysis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.13429
- https://arxiv.org/pdf/2404.13429
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4395064984
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4395064984Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.13429Digital Object Identifier
- Title
-
Adjoint-Based Projections for Uncertainty Quantification near Stochastically Perturbed Limit Cycles and ToriWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-20Full publication date if available
- Authors
-
Zaid Ahsan, Harry Dankowicz, Christian KuehnList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.13429Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.13429Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.13429Direct OA link when available
- Concepts
-
Limit (mathematics), Torus, Uncertainty quantification, Statistical physics, Physics, Mathematics, Applied mathematics, Mathematical analysis, Statistics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4395064984 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.13429 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.13429 |
| ids.openalex | https://openalex.org/W4395064984 |
| fwci | |
| type | preprint |
| title | Adjoint-Based Projections for Uncertainty Quantification near Stochastically Perturbed Limit Cycles and Tori |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10928 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9951000213623047 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | Probabilistic and Robust Engineering Design |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9348999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151201525 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6986777186393738 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177239 |
| concepts[0].display_name | Limit (mathematics) |
| concepts[1].id | https://openalex.org/C9767117 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6221860647201538 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12510 |
| concepts[1].display_name | Torus |
| concepts[2].id | https://openalex.org/C32230216 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5476764440536499 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7882499 |
| concepts[2].display_name | Uncertainty quantification |
| concepts[3].id | https://openalex.org/C121864883 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5201488137245178 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[3].display_name | Statistical physics |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4529969394207001 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.36742454767227173 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C28826006 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3554534316062927 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[6].display_name | Applied mathematics |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.24582579731941223 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15376022458076477 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12418195605278015 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/limit |
| keywords[0].score | 0.6986777186393738 |
| keywords[0].display_name | Limit (mathematics) |
| keywords[1].id | https://openalex.org/keywords/torus |
| keywords[1].score | 0.6221860647201538 |
| keywords[1].display_name | Torus |
| keywords[2].id | https://openalex.org/keywords/uncertainty-quantification |
| keywords[2].score | 0.5476764440536499 |
| keywords[2].display_name | Uncertainty quantification |
| keywords[3].id | https://openalex.org/keywords/statistical-physics |
| keywords[3].score | 0.5201488137245178 |
| keywords[3].display_name | Statistical physics |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.4529969394207001 |
| keywords[4].display_name | Physics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.36742454767227173 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/applied-mathematics |
| keywords[6].score | 0.3554534316062927 |
| keywords[6].display_name | Applied mathematics |
| keywords[7].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[7].score | 0.24582579731941223 |
| keywords[7].display_name | Mathematical analysis |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.15376022458076477 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/geometry |
| keywords[9].score | 0.12418195605278015 |
| keywords[9].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.13429 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.13429 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.13429 |
| locations[1].id | doi:10.48550/arxiv.2404.13429 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.13429 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5043138551 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6436-2316 |
| authorships[0].author.display_name | Zaid Ahsan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahsan, Zaid |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5076745658 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6764-8915 |
| authorships[1].author.display_name | Harry Dankowicz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dankowicz, Harry |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024817853 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7063-6173 |
| authorships[2].author.display_name | Christian Kuehn |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kuehn, Christian |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.13429 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-24T00:00:00 |
| display_name | Adjoint-Based Projections for Uncertainty Quantification near Stochastically Perturbed Limit Cycles and Tori |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10928 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9951000213623047 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | Probabilistic and Robust Engineering Design |
| related_works | https://openalex.org/W2167530280, https://openalex.org/W3124916295, https://openalex.org/W2022411416, https://openalex.org/W2146447767, https://openalex.org/W1487790116, https://openalex.org/W3197597876, https://openalex.org/W4248544590, https://openalex.org/W1529020016, https://openalex.org/W4381247976, https://openalex.org/W2038335296 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.13429 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.13429 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.13429 |
| primary_location.id | pmh:oai:arXiv.org:2404.13429 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.13429 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.13429 |
| publication_date | 2024-04-20 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 47, 92, 160, 170, 183, 208, 237, 243 |
| abstract_inverted_index.In | 109, 167 |
| abstract_inverted_index.an | 216 |
| abstract_inverted_index.be | 89, 99 |
| abstract_inverted_index.by | 12, 91 |
| abstract_inverted_index.in | 36, 120, 180, 223, 242, 248 |
| abstract_inverted_index.is | 178, 188, 229 |
| abstract_inverted_index.of | 15, 30, 39, 50, 74, 112, 127, 138, 144, 159, 164, 182, 193, 199, 207, 218 |
| abstract_inverted_index.or | 65, 83 |
| abstract_inverted_index.to | 45, 104, 156, 173, 231 |
| abstract_inverted_index.The | 41, 69, 186 |
| abstract_inverted_index.and | 26, 132, 204 |
| abstract_inverted_index.are | 54, 153 |
| abstract_inverted_index.can | 98 |
| abstract_inverted_index.for | 8, 196 |
| abstract_inverted_index.may | 88 |
| abstract_inverted_index.new | 4 |
| abstract_inverted_index.not | 252 |
| abstract_inverted_index.one | 205 |
| abstract_inverted_index.the | 13, 31, 37, 57, 62, 80, 102, 105, 110, 115, 121, 124, 139, 142, 147, 157, 174, 191, 219, 224, 233 |
| abstract_inverted_index.two | 197 |
| abstract_inverted_index.use | 126 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.case | 111, 158 |
| abstract_inverted_index.coco | 228 |
| abstract_inverted_index.does | 251 |
| abstract_inverted_index.each | 72, 168 |
| abstract_inverted_index.flow | 60 |
| abstract_inverted_index.from | 101 |
| abstract_inverted_index.lack | 143 |
| abstract_inverted_index.near | 19, 61, 79, 236 |
| abstract_inverted_index.over | 85 |
| abstract_inverted_index.same | 151 |
| abstract_inverted_index.that | 53, 77, 135, 250 |
| abstract_inverted_index.then | 154 |
| abstract_inverted_index.tori | 29 |
| abstract_inverted_index.upon | 118 |
| abstract_inverted_index.uses | 43 |
| abstract_inverted_index.with | 71 |
| abstract_inverted_index.These | 150 |
| abstract_inverted_index.along | 146 |
| abstract_inverted_index.case, | 169 |
| abstract_inverted_index.cycle | 64, 82 |
| abstract_inverted_index.found | 179 |
| abstract_inverted_index.limit | 63, 113, 148, 202, 235 |
| abstract_inverted_index.noise | 18 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.small | 16 |
| abstract_inverted_index.terms | 181 |
| abstract_inverted_index.times | 87 |
| abstract_inverted_index.torus | 84, 163, 241 |
| abstract_inverted_index.under | 56 |
| abstract_inverted_index.whose | 95 |
| abstract_inverted_index.(limit | 24 |
| abstract_inverted_index.cycle. | 149 |
| abstract_inverted_index.cycles | 203 |
| abstract_inverted_index.ensure | 136 |
| abstract_inverted_index.family | 49 |
| abstract_inverted_index.matrix | 97 |
| abstract_inverted_index.noise. | 40 |
| abstract_inverted_index.orbits | 23 |
| abstract_inverted_index.remain | 78 |
| abstract_inverted_index.stable | 21 |
| abstract_inverted_index.system | 247 |
| abstract_inverted_index.torus. | 68, 214 |
| abstract_inverted_index.absence | 38 |
| abstract_inverted_index.against | 190 |
| abstract_inverted_index.analyze | 232 |
| abstract_inverted_index.applied | 230 |
| abstract_inverted_index.cycles) | 25 |
| abstract_inverted_index.cycles, | 114 |
| abstract_inverted_index.despite | 141 |
| abstract_inverted_index.example | 206 |
| abstract_inverted_index.induced | 11 |
| abstract_inverted_index.package | 227 |
| abstract_inverted_index.problem | 6, 177, 222 |
| abstract_inverted_index.results | 119, 192 |
| abstract_inverted_index.series. | 185 |
| abstract_inverted_index.support | 253 |
| abstract_inverted_index.systems | 34 |
| abstract_inverted_index.through | 123 |
| abstract_inverted_index.Brownian | 17 |
| abstract_inverted_index.Finally, | 215 |
| abstract_inverted_index.Gaussian | 93 |
| abstract_inverted_index.adjoints | 44 |
| abstract_inverted_index.analysis | 116 |
| abstract_inverted_index.examples | 198 |
| abstract_inverted_index.explicit | 125 |
| abstract_inverted_index.improves | 117 |
| abstract_inverted_index.obtained | 35, 100 |
| abstract_inverted_index.periodic | 22 |
| abstract_inverted_index.presence | 14 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.problem. | 108 |
| abstract_inverted_index.solution | 103, 140, 172 |
| abstract_inverted_index.analysis. | 255 |
| abstract_inverted_index.arbitrary | 165 |
| abstract_inverted_index.construct | 46 |
| abstract_inverted_index.dynamical | 33, 246 |
| abstract_inverted_index.invariant | 28, 55, 67, 162, 213, 240 |
| abstract_inverted_index.nonlinear | 244 |
| abstract_inverted_index.numerical | 194, 225 |
| abstract_inverted_index.perturbed | 201, 210 |
| abstract_inverted_index.validated | 189 |
| abstract_inverted_index.continuous | 48 |
| abstract_inverted_index.convergent | 184 |
| abstract_inverted_index.covariance | 96, 175, 220 |
| abstract_inverted_index.dimension. | 166 |
| abstract_inverted_index.hyperplane | 73 |
| abstract_inverted_index.linearized | 58 |
| abstract_inverted_index.literature | 122 |
| abstract_inverted_index.parameters | 134 |
| abstract_inverted_index.stochastic | 75 |
| abstract_inverted_index.uniqueness | 137 |
| abstract_inverted_index.closed-form | 171, 254 |
| abstract_inverted_index.formulation | 7, 42 |
| abstract_inverted_index.generalized | 155 |
| abstract_inverted_index.hyperplanes | 52 |
| abstract_inverted_index.innovations | 152 |
| abstract_inverted_index.integration | 195 |
| abstract_inverted_index.methodology | 187 |
| abstract_inverted_index.quantifying | 9 |
| abstract_inverted_index.small-noise | 234 |
| abstract_inverted_index.state-space | 128 |
| abstract_inverted_index.transversal | 51 |
| abstract_inverted_index.uncertainty | 10 |
| abstract_inverted_index.approximated | 90 |
| abstract_inverted_index.constraints, | 131 |
| abstract_inverted_index.continuation | 226 |
| abstract_inverted_index.distribution | 94 |
| abstract_inverted_index.intermediate | 86 |
| abstract_inverted_index.projections, | 129 |
| abstract_inverted_index.trajectories | 76 |
| abstract_inverted_index.corresponding | 106 |
| abstract_inverted_index.deterministic | 32, 59, 81, 245 |
| abstract_inverted_index.hyperbolicity | 145 |
| abstract_inverted_index.intersections | 70 |
| abstract_inverted_index.quasiperiodic | 27, 66, 161, 212, 239 |
| abstract_inverted_index.transversally | 20 |
| abstract_inverted_index.$\mathbb{R}^4$ | 249 |
| abstract_inverted_index.boundary-value | 5, 107, 176, 221 |
| abstract_inverted_index.implementation | 217 |
| abstract_inverted_index.stochastically | 200, 209 |
| abstract_inverted_index.transversality | 130 |
| abstract_inverted_index.two-dimensional | 211, 238 |
| abstract_inverted_index.symmetry-breaking | 133 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |