adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection Article Swipe
Xuhong Wang
,
Ying Du
,
Shijie Lin
,
Ping Cui
,
Yuntian Shen
,
Yupu Yang
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1016/j.knosys.2019.105187
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1016/j.knosys.2019.105187
Related Topics
Concepts
Autoencoder
Overfitting
Anomaly detection
Regularization (linguistics)
Anomaly (physics)
Artificial intelligence
Gaussian
Computer science
Latent variable
Pattern recognition (psychology)
Generative model
Generative grammar
Machine learning
Deep learning
Artificial neural network
Physics
Condensed matter physics
Quantum mechanics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.knosys.2019.105187
- OA Status
- green
- Cited By
- 111
- References
- 94
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2987821246
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2987821246Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.knosys.2019.105187Digital Object Identifier
- Title
-
adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-11-06Full publication date if available
- Authors
-
Xuhong Wang, Ying Du, Shijie Lin, Ping Cui, Yuntian Shen, Yupu YangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.knosys.2019.105187Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1903.00904Direct OA link when available
- Concepts
-
Autoencoder, Overfitting, Anomaly detection, Regularization (linguistics), Anomaly (physics), Artificial intelligence, Gaussian, Computer science, Latent variable, Pattern recognition (psychology), Generative model, Generative grammar, Machine learning, Deep learning, Artificial neural network, Physics, Condensed matter physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
111Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 20, 2023: 23, 2022: 16, 2021: 26Per-year citation counts (last 5 years)
- References (count)
-
94Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2987821246 |
|---|---|
| doi | https://doi.org/10.1016/j.knosys.2019.105187 |
| ids.doi | https://doi.org/10.1016/j.knosys.2019.105187 |
| ids.mag | 2987821246 |
| ids.openalex | https://openalex.org/W2987821246 |
| fwci | 8.60259375 |
| type | article |
| title | adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection |
| awards[0].id | https://openalex.org/G3551451559 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 51777122 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 190 |
| biblio.last_page | 105187 |
| biblio.first_page | 105187 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T12391 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9725000262260437 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Artificial Immune Systems Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 3130 |
| apc_list.currency | USD |
| apc_list.value_usd | 3130 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.920619785785675 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C22019652 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8428891897201538 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[1].display_name | Overfitting |
| concepts[2].id | https://openalex.org/C739882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.719777524471283 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[2].display_name | Anomaly detection |
| concepts[3].id | https://openalex.org/C2776135515 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6728034019470215 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[3].display_name | Regularization (linguistics) |
| concepts[4].id | https://openalex.org/C12997251 |
| concepts[4].level | 2 |
| concepts[4].score | 0.601375937461853 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[4].display_name | Anomaly (physics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6008815765380859 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C163716315 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5824460387229919 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[6].display_name | Gaussian |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5630382299423218 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C51167844 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5560728311538696 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[8].display_name | Latent variable |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5164394974708557 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C167966045 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4903545379638672 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[10].display_name | Generative model |
| concepts[11].id | https://openalex.org/C39890363 |
| concepts[11].level | 2 |
| concepts[11].score | 0.37463897466659546 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[11].display_name | Generative grammar |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.37365081906318665 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C108583219 |
| concepts[13].level | 2 |
| concepts[13].score | 0.22262221574783325 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[13].display_name | Deep learning |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.17686116695404053 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08217710256576538 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C26873012 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[16].display_name | Condensed matter physics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.920619785785675 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/overfitting |
| keywords[1].score | 0.8428891897201538 |
| keywords[1].display_name | Overfitting |
| keywords[2].id | https://openalex.org/keywords/anomaly-detection |
| keywords[2].score | 0.719777524471283 |
| keywords[2].display_name | Anomaly detection |
| keywords[3].id | https://openalex.org/keywords/regularization |
| keywords[3].score | 0.6728034019470215 |
| keywords[3].display_name | Regularization (linguistics) |
| keywords[4].id | https://openalex.org/keywords/anomaly |
| keywords[4].score | 0.601375937461853 |
| keywords[4].display_name | Anomaly (physics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.6008815765380859 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/gaussian |
| keywords[6].score | 0.5824460387229919 |
| keywords[6].display_name | Gaussian |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.5630382299423218 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/latent-variable |
| keywords[8].score | 0.5560728311538696 |
| keywords[8].display_name | Latent variable |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.5164394974708557 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/generative-model |
| keywords[10].score | 0.4903545379638672 |
| keywords[10].display_name | Generative model |
| keywords[11].id | https://openalex.org/keywords/generative-grammar |
| keywords[11].score | 0.37463897466659546 |
| keywords[11].display_name | Generative grammar |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.37365081906318665 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/deep-learning |
| keywords[13].score | 0.22262221574783325 |
| keywords[13].display_name | Deep learning |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.17686116695404053 |
| keywords[14].display_name | Artificial neural network |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.08217710256576538 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1016/j.knosys.2019.105187 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S10169007 |
| locations[0].source.issn | 0950-7051, 1872-7409 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0950-7051 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Knowledge-Based Systems |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Knowledge-Based Systems |
| locations[0].landing_page_url | https://doi.org/10.1016/j.knosys.2019.105187 |
| locations[1].id | pmh:oai:arXiv.org:1903.00904 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1903.00904 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1903.00904 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5090162303 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0944-8667 |
| authorships[0].author.display_name | Xuhong Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I183067930 |
| authorships[0].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuhong Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Shanghai Jiao Tong University, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5040786809 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7119-8996 |
| authorships[1].author.display_name | Ying Du |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University, Shanghai, China |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ying Du |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shanghai Jiao Tong University, Shanghai, China |
| authorships[2].author.id | https://openalex.org/A5071151467 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0916-5699 |
| authorships[2].author.display_name | Shijie Lin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[2].affiliations[0].raw_affiliation_string | Wuhan University, Wuhan, China |
| authorships[2].institutions[0].id | https://openalex.org/I37461747 |
| authorships[2].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shijie Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Wuhan University, Wuhan, China |
| authorships[3].author.id | https://openalex.org/A5011408985 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6918-3103 |
| authorships[3].author.display_name | Ping Cui |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[3].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University, Shanghai, China |
| authorships[3].institutions[0].id | https://openalex.org/I183067930 |
| authorships[3].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ping Cui |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shanghai Jiao Tong University, Shanghai, China |
| authorships[4].author.id | https://openalex.org/A5114172166 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yuntian Shen |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[4].affiliations[0].raw_affiliation_string | University of California, Davis, USA |
| authorships[4].institutions[0].id | https://openalex.org/I84218800 |
| authorships[4].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, Davis |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuntian Shen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of California, Davis, USA |
| authorships[5].author.id | https://openalex.org/A5101001104 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yupu Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[5].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University, Shanghai, China |
| authorships[5].institutions[0].id | https://openalex.org/I183067930 |
| authorships[5].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yupu Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Shanghai Jiao Tong University, Shanghai, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1903.00904 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4289763776, https://openalex.org/W2810330923, https://openalex.org/W3186512740, https://openalex.org/W3194885736, https://openalex.org/W3046391934, https://openalex.org/W4363671829, https://openalex.org/W2988134182, https://openalex.org/W3015304056, https://openalex.org/W3042518613, https://openalex.org/W4309969736 |
| cited_by_count | 111 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 20 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 23 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 16 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 26 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 13 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1903.00904 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1903.00904 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1903.00904 |
| primary_location.id | doi:10.1016/j.knosys.2019.105187 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S10169007 |
| primary_location.source.issn | 0950-7051, 1872-7409 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0950-7051 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Knowledge-Based Systems |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Knowledge-Based Systems |
| primary_location.landing_page_url | https://doi.org/10.1016/j.knosys.2019.105187 |
| publication_date | 2019-11-06 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W6742147308, https://openalex.org/W2533835508, https://openalex.org/W2907896701, https://openalex.org/W6735108248, https://openalex.org/W6751917112, https://openalex.org/W2922656120, https://openalex.org/W6766341733, https://openalex.org/W2521200999, https://openalex.org/W2115627867, https://openalex.org/W2963166639, https://openalex.org/W6729986884, https://openalex.org/W6785131241, https://openalex.org/W6753123669, https://openalex.org/W6743674261, https://openalex.org/W3022187094, https://openalex.org/W2136226124, https://openalex.org/W2963307331, https://openalex.org/W6754796663, https://openalex.org/W6753113894, https://openalex.org/W6677794798, https://openalex.org/W6679898850, https://openalex.org/W2590761734, https://openalex.org/W2132870739, https://openalex.org/W2800666469, https://openalex.org/W6635808069, https://openalex.org/W769973221, https://openalex.org/W2194640083, https://openalex.org/W2181203738, https://openalex.org/W309312769, https://openalex.org/W6726377520, https://openalex.org/W6697265569, https://openalex.org/W2097714558, https://openalex.org/W6650751707, https://openalex.org/W6644307160, https://openalex.org/W6647017595, https://openalex.org/W6608145709, https://openalex.org/W6703470281, https://openalex.org/W6757844995, https://openalex.org/W6675634716, https://openalex.org/W2803446235, https://openalex.org/W1485231155, https://openalex.org/W4365799989, https://openalex.org/W2961333734, https://openalex.org/W2118324213, https://openalex.org/W2921227316, https://openalex.org/W2910068345, https://openalex.org/W2134641333, https://openalex.org/W2552475543, https://openalex.org/W2186518338, https://openalex.org/W4320013936, https://openalex.org/W2949982377, https://openalex.org/W2599354622, https://openalex.org/W2099471712, https://openalex.org/W1959608418, https://openalex.org/W2296719434, https://openalex.org/W2786088545, https://openalex.org/W2286533962, https://openalex.org/W3098957257, https://openalex.org/W3163547718, https://openalex.org/W2963523189, https://openalex.org/W4240981432, https://openalex.org/W3153872861, https://openalex.org/W2953046278, https://openalex.org/W199035648, https://openalex.org/W2985171546, https://openalex.org/W2964232409, https://openalex.org/W2732290163, https://openalex.org/W4293568373, https://openalex.org/W2952437697, https://openalex.org/W1986332411, https://openalex.org/W2611452998, https://openalex.org/W2963045681, https://openalex.org/W2144182447, https://openalex.org/W1976526581, https://openalex.org/W2884581909, https://openalex.org/W2950378732, https://openalex.org/W2516208336, https://openalex.org/W2890235427, https://openalex.org/W578119892, https://openalex.org/W2735401168, https://openalex.org/W2768240017, https://openalex.org/W2742334953, https://openalex.org/W2963445059, https://openalex.org/W2104933073, https://openalex.org/W2000661457, https://openalex.org/W398859631, https://openalex.org/W2129905273, https://openalex.org/W2622563070, https://openalex.org/W2336788611, https://openalex.org/W2396566817, https://openalex.org/W4295521014, https://openalex.org/W4293713156, https://openalex.org/W2729094633, https://openalex.org/W1598751629 |
| referenced_works_count | 94 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5090162303 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I183067930 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.97923156 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |