Advance drought prediction through rainfall forecasting with hybrid deep learning model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-024-80099-6
Drought is a natural disaster that can affect a larger area over time. Damage caused by the drought can only be reduced through its accurate prediction. In this context, we proposed a hybrid stacked model for rainfall prediction, which is crucial for effective drought forecasting and management. In the first layer of stacked models, Bi-directional LSTM is used to extract the features, and then in the second layer, the LSTM model will make the predictions. The model captures complex temporal dependencies by processing multivariate time series data in both forward and backward directions using bi-directional LSTM layers. Trained with the Mean Squared Error loss and Adam optimizer, the model demonstrates improved forecasting accuracy, offering significant potential for proactive drought management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-024-80099-6
- https://www.nature.com/articles/s41598-024-80099-6.pdf
- OA Status
- gold
- Cited By
- 8
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405371058
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405371058Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-024-80099-6Digital Object Identifier
- Title
-
Advance drought prediction through rainfall forecasting with hybrid deep learning modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-13Full publication date if available
- Authors
-
Brij B. Gupta, Akshat Gaurav, Razaz Waheeb Attar, Varsha Arya, Shavi Bansal, Ahmed Alhomoud, Kwok Tai ChuiList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-024-80099-6Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-024-80099-6.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-024-80099-6.pdfDirect OA link when available
- Concepts
-
Computer science, Context (archaeology), Multivariate statistics, Layer (electronics), Artificial intelligence, Mean squared error, Time series, Deep learning, Series (stratigraphy), Machine learning, Mean squared prediction error, Data mining, Statistics, Mathematics, Geology, Organic chemistry, Chemistry, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405371058 |
|---|---|
| doi | https://doi.org/10.1038/s41598-024-80099-6 |
| ids.doi | https://doi.org/10.1038/s41598-024-80099-6 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39672936 |
| ids.openalex | https://openalex.org/W4405371058 |
| fwci | 4.59027287 |
| type | article |
| title | Advance drought prediction through rainfall forecasting with hybrid deep learning model |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 30459 |
| biblio.first_page | 30459 |
| topics[0].id | https://openalex.org/T11186 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Hydrology and Drought Analysis |
| topics[1].id | https://openalex.org/T11490 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Hydrological Forecasting Using AI |
| topics[2].id | https://openalex.org/T10930 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Flood Risk Assessment and Management |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7375041246414185 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7164652943611145 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C161584116 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5942192673683167 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[2].display_name | Multivariate statistics |
| concepts[3].id | https://openalex.org/C2779227376 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5437021255493164 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[3].display_name | Layer (electronics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5237070322036743 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C139945424 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5146056413650513 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[5].display_name | Mean squared error |
| concepts[6].id | https://openalex.org/C151406439 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5063484907150269 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[6].display_name | Time series |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4800482988357544 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C143724316 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4641464948654175 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[8].display_name | Series (stratigraphy) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4620586633682251 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C167085575 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43688973784446716 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6803654 |
| concepts[10].display_name | Mean squared prediction error |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3661542534828186 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1550469994544983 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0996711254119873 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.08729815483093262 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C178790620 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[15].display_name | Organic chemistry |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7375041246414185 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.7164652943611145 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[2].score | 0.5942192673683167 |
| keywords[2].display_name | Multivariate statistics |
| keywords[3].id | https://openalex.org/keywords/layer |
| keywords[3].score | 0.5437021255493164 |
| keywords[3].display_name | Layer (electronics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5237070322036743 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/mean-squared-error |
| keywords[5].score | 0.5146056413650513 |
| keywords[5].display_name | Mean squared error |
| keywords[6].id | https://openalex.org/keywords/time-series |
| keywords[6].score | 0.5063484907150269 |
| keywords[6].display_name | Time series |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4800482988357544 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/series |
| keywords[8].score | 0.4641464948654175 |
| keywords[8].display_name | Series (stratigraphy) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4620586633682251 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mean-squared-prediction-error |
| keywords[10].score | 0.43688973784446716 |
| keywords[10].display_name | Mean squared prediction error |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3661542534828186 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.1550469994544983 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.0996711254119873 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.08729815483093262 |
| keywords[14].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1038/s41598-024-80099-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-024-80099-6.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-024-80099-6 |
| locations[1].id | pmid:39672936 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39672936 |
| locations[2].id | pmh:oai:doaj.org/article:7779d2c90b2e458890c73a04d787e62f |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/7779d2c90b2e458890c73a04d787e62f |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5071261948 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4929-4698 |
| authorships[0].author.display_name | Brij B. Gupta |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143578492 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, Asia University, Taichung, 413, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I143578492 |
| authorships[0].institutions[0].ror | https://ror.org/038a1tp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143578492 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | Asia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brij B. Gupta |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Information Engineering, Asia University, Taichung, 413, Taiwan |
| authorships[1].author.id | https://openalex.org/A5042846465 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5796-9424 |
| authorships[1].author.display_name | Akshat Gaurav |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210147267 |
| authorships[1].affiliations[0].raw_affiliation_string | Ronin Institute, Montclair, NJ, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210147267 |
| authorships[1].institutions[0].ror | https://ror.org/04awze035 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210147267 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Ronin Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Akshat Gaurav |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ronin Institute, Montclair, NJ, USA |
| authorships[2].author.id | https://openalex.org/A5010362877 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9819-7945 |
| authorships[2].author.display_name | Razaz Waheeb Attar |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I106778892, https://openalex.org/I4210165529 |
| authorships[2].affiliations[0].raw_affiliation_string | Management Department, College of Business Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I106778892 |
| authorships[2].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[2].institutions[1].id | https://openalex.org/I4210165529 |
| authorships[2].institutions[1].ror | https://ror.org/05tcr1n44 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210165529 |
| authorships[2].institutions[1].country_code | SA |
| authorships[2].institutions[1].display_name | University of Business and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Razaz Waheeb Attar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Management Department, College of Business Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5086803967 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7549-4429 |
| authorships[3].author.display_name | Varsha Arya |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I8679417 |
| authorships[3].affiliations[0].raw_affiliation_string | Hong Kong Metropolitan University (HKMU), Ho Man Tin, Hongkong |
| authorships[3].institutions[0].id | https://openalex.org/I8679417 |
| authorships[3].institutions[0].ror | https://ror.org/0349bsm71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I8679417 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Hong Kong Metropolitan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Varsha Arya |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hong Kong Metropolitan University (HKMU), Ho Man Tin, Hongkong |
| authorships[4].author.id | https://openalex.org/A5101290033 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Shavi Bansal |
| authorships[4].affiliations[0].raw_affiliation_string | Insights2Techinfo, Indore, India |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shavi Bansal |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Insights2Techinfo, Indore, India |
| authorships[5].author.id | https://openalex.org/A5102895918 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2782-3106 |
| authorships[5].author.display_name | Ahmed Alhomoud |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I118590987 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Science, Northern Border University, Rafha, 91431, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I118590987 |
| authorships[5].institutions[0].ror | https://ror.org/03j9tzj20 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I118590987 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Northern Border University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ahmed Alhomoud |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, Faculty of Science, Northern Border University, Rafha, 91431, Saudi Arabia |
| authorships[6].author.id | https://openalex.org/A5086102702 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7992-9901 |
| authorships[6].author.display_name | Kwok Tai Chui |
| authorships[6].countries | HK |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I8679417 |
| authorships[6].affiliations[0].raw_affiliation_string | Hong Kong Metropolitan University (HKMU), Ho Man Tin, Hong Kong |
| authorships[6].institutions[0].id | https://openalex.org/I8679417 |
| authorships[6].institutions[0].ror | https://ror.org/0349bsm71 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I8679417 |
| authorships[6].institutions[0].country_code | HK |
| authorships[6].institutions[0].display_name | Hong Kong Metropolitan University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kwok Tai Chui |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Hong Kong Metropolitan University (HKMU), Ho Man Tin, Hong Kong |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-024-80099-6.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Advance drought prediction through rainfall forecasting with hybrid deep learning model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11186 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Hydrology and Drought Analysis |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2406638334, https://openalex.org/W2102148524, https://openalex.org/W1991765889, https://openalex.org/W4295442786, https://openalex.org/W2621951291, https://openalex.org/W4319441652, https://openalex.org/W155406958, https://openalex.org/W2974739419, https://openalex.org/W4387088901 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1038/s41598-024-80099-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-024-80099-6.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-024-80099-6 |
| primary_location.id | doi:10.1038/s41598-024-80099-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-024-80099-6.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-024-80099-6 |
| publication_date | 2024-12-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3124635350, https://openalex.org/W4307111613, https://openalex.org/W2784184607, https://openalex.org/W2957309518, https://openalex.org/W4304788990, https://openalex.org/W4392777968, https://openalex.org/W4221009493, https://openalex.org/W3164697149, https://openalex.org/W4366827664, https://openalex.org/W4313531911, https://openalex.org/W2562005987, https://openalex.org/W4390694670, https://openalex.org/W3195433497, https://openalex.org/W2949039742, https://openalex.org/W3010527047, https://openalex.org/W2509773429, https://openalex.org/W2792454374, https://openalex.org/W4213238020, https://openalex.org/W4229445657, https://openalex.org/W4312383970, https://openalex.org/W2887356459, https://openalex.org/W2612335113, https://openalex.org/W2586363962, https://openalex.org/W4285219276 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 2, 8, 31 |
| abstract_inverted_index.In | 26, 47 |
| abstract_inverted_index.be | 20 |
| abstract_inverted_index.by | 15, 81 |
| abstract_inverted_index.in | 64, 87 |
| abstract_inverted_index.is | 1, 39, 56 |
| abstract_inverted_index.of | 51 |
| abstract_inverted_index.to | 58 |
| abstract_inverted_index.we | 29 |
| abstract_inverted_index.The | 75 |
| abstract_inverted_index.and | 45, 62, 90, 104 |
| abstract_inverted_index.can | 6, 18 |
| abstract_inverted_index.for | 35, 41, 116 |
| abstract_inverted_index.its | 23 |
| abstract_inverted_index.the | 16, 48, 60, 65, 68, 73, 99, 107 |
| abstract_inverted_index.Adam | 105 |
| abstract_inverted_index.LSTM | 55, 69, 95 |
| abstract_inverted_index.Mean | 100 |
| abstract_inverted_index.area | 10 |
| abstract_inverted_index.both | 88 |
| abstract_inverted_index.data | 86 |
| abstract_inverted_index.loss | 103 |
| abstract_inverted_index.make | 72 |
| abstract_inverted_index.only | 19 |
| abstract_inverted_index.over | 11 |
| abstract_inverted_index.that | 5 |
| abstract_inverted_index.then | 63 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.time | 84 |
| abstract_inverted_index.used | 57 |
| abstract_inverted_index.will | 71 |
| abstract_inverted_index.with | 98 |
| abstract_inverted_index.Error | 102 |
| abstract_inverted_index.first | 49 |
| abstract_inverted_index.layer | 50 |
| abstract_inverted_index.model | 34, 70, 76, 108 |
| abstract_inverted_index.time. | 12 |
| abstract_inverted_index.using | 93 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.Damage | 13 |
| abstract_inverted_index.affect | 7 |
| abstract_inverted_index.caused | 14 |
| abstract_inverted_index.hybrid | 32 |
| abstract_inverted_index.larger | 9 |
| abstract_inverted_index.layer, | 67 |
| abstract_inverted_index.second | 66 |
| abstract_inverted_index.series | 85 |
| abstract_inverted_index.Drought | 0 |
| abstract_inverted_index.Squared | 101 |
| abstract_inverted_index.Trained | 97 |
| abstract_inverted_index.complex | 78 |
| abstract_inverted_index.crucial | 40 |
| abstract_inverted_index.drought | 17, 43, 118 |
| abstract_inverted_index.extract | 59 |
| abstract_inverted_index.forward | 89 |
| abstract_inverted_index.layers. | 96 |
| abstract_inverted_index.models, | 53 |
| abstract_inverted_index.natural | 3 |
| abstract_inverted_index.reduced | 21 |
| abstract_inverted_index.stacked | 33, 52 |
| abstract_inverted_index.through | 22 |
| abstract_inverted_index.accurate | 24 |
| abstract_inverted_index.backward | 91 |
| abstract_inverted_index.captures | 77 |
| abstract_inverted_index.context, | 28 |
| abstract_inverted_index.disaster | 4 |
| abstract_inverted_index.improved | 110 |
| abstract_inverted_index.offering | 113 |
| abstract_inverted_index.proposed | 30 |
| abstract_inverted_index.rainfall | 36 |
| abstract_inverted_index.temporal | 79 |
| abstract_inverted_index.accuracy, | 112 |
| abstract_inverted_index.effective | 42 |
| abstract_inverted_index.features, | 61 |
| abstract_inverted_index.potential | 115 |
| abstract_inverted_index.proactive | 117 |
| abstract_inverted_index.directions | 92 |
| abstract_inverted_index.optimizer, | 106 |
| abstract_inverted_index.processing | 82 |
| abstract_inverted_index.forecasting | 44, 111 |
| abstract_inverted_index.management. | 46, 119 |
| abstract_inverted_index.prediction, | 37 |
| abstract_inverted_index.prediction. | 25 |
| abstract_inverted_index.significant | 114 |
| abstract_inverted_index.demonstrates | 109 |
| abstract_inverted_index.dependencies | 80 |
| abstract_inverted_index.multivariate | 83 |
| abstract_inverted_index.predictions. | 74 |
| abstract_inverted_index.Bi-directional | 54 |
| abstract_inverted_index.bi-directional | 94 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5071261948 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I143578492 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.91749673 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |