Advanced brain age prediction using 3D convolutional neural network on structural MRI Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1002/alz.089776
Background Predicting brain age from neuroimaging data is an emerging field. The age gap (AG), the difference between chronological age (CA) and brain age (BA), is crucial for indicating individual neuroanatomical aging. Previous deep learning models faced challenges in generalizability and neuroanatomical interpretability. We incorporated patients with different dementia types, including dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD), alongside mild cognitive impairment (MCI) and cognitive normal (CN) individuals. This inclusive strategy is essential for comprehensive mapping of neurocognitive trajectories and understanding distinct aging patterns across various cognitive conditions. Method Utilizing T1‐weighted MRI images of n = 3,859 subjects (Table 1) from the CamCAN, NACC, and ADNI databases, this study aimed to predict brain age in four groups (CN, MCI, AD, and DLB). Structural MRI data were spatial normalized and skull‐striped. Then a 3D Convolutional Neural Network (CNN) based on the skull‐striped data was used for age prediction. The model’s architecture includes three convolutional layers with ReLU activation, max‐pooling, batch normalization, and dropout for regularization, ending with global average pooling and dense layers. The model was trained and validated on CN subjects. The trained model was used to predict age in MCI, DLB, and AD patients as well as the test set of CN subjects. Result The 3D CNN model accurately predicted brain age in the CN test set with an AG of 0.64 ± 2.74 years and an absolute AG of 1.86 ± 2.11 years (Figure 1 and Table 1). In DLB and AD patients, the average AG was 3.81 and 2.90 years, respectively, and significantly larger than 0 (P < 10 ‐5 ), indicating accelerated aging patterns in these groups. The average AG of MCI was 0.09 years which was significantly smaller than that of both DLB and AD (P < 10 ‐3 ), indicating the early stage of impairment in MCI patients. Conclusion Our 3D CNN model accurately predicted brain age in cognitively normal individuals and identified accelerated aging in DLB and AD patients. The model's precision highlights its potential for early detection and understanding of neurocognitive trajectories, contributing to advancements in neurological research and clinical diagnostics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/alz.089776
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406201114
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406201114Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/alz.089776Digital Object Identifier
- Title
-
Advanced brain age prediction using 3D convolutional neural network on structural MRIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-01Full publication date if available
- Authors
-
Babak Ahmadi, Zohreh Morshedizad, Mostafa Reisi Gahrooei, Abbas Babajani‐FeremiList of authors in order
- Landing page
-
https://doi.org/10.1002/alz.089776Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1002/alz.089776Direct OA link when available
- Concepts
-
Convolutional neural network, Artificial intelligence, Computer science, Artificial neural network, Neuroscience, Pattern recognition (psychology), PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406201114 |
|---|---|
| doi | https://doi.org/10.1002/alz.089776 |
| ids.doi | https://doi.org/10.1002/alz.089776 |
| ids.openalex | https://openalex.org/W4406201114 |
| fwci | 0.0 |
| type | article |
| title | Advanced brain age prediction using 3D convolutional neural network on structural MRI |
| biblio.issue | S2 |
| biblio.volume | 20 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9803000092506409 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9018999934196472 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list.value | 4000 |
| apc_list.currency | USD |
| apc_list.value_usd | 4000 |
| apc_paid.value | 4000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4000 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8032402992248535 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5094061493873596 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.48969677090644836 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4298091232776642 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C169760540 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4080795645713806 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[4].display_name | Neuroscience |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3509286642074585 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.272352397441864 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8032402992248535 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5094061493873596 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.48969677090644836 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.4298091232776642 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/neuroscience |
| keywords[4].score | 0.4080795645713806 |
| keywords[4].display_name | Neuroscience |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3509286642074585 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.272352397441864 |
| keywords[6].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1002/alz.089776 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S108427512 |
| locations[0].source.issn | 1552-5260, 1552-5279 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1552-5260 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Alzheimer s & Dementia |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Alzheimer's & Dementia |
| locations[0].landing_page_url | https://doi.org/10.1002/alz.089776 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:11714872 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Alzheimers Dement |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11714872 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5021015017 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8635-5256 |
| authorships[0].author.display_name | Babak Ahmadi |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL USA |
| authorships[0].institutions[0].id | https://openalex.org/I33213144 |
| authorships[0].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Florida |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Babak Ahmadi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Florida, Gainesville, FL USA |
| authorships[1].author.id | https://openalex.org/A5115821677 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zohreh Morshedizad |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL USA |
| authorships[1].institutions[0].id | https://openalex.org/I33213144 |
| authorships[1].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Florida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zohreh Morshedizad |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Florida, Gainesville, FL USA |
| authorships[2].author.id | https://openalex.org/A5068140539 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7633-9575 |
| authorships[2].author.display_name | Mostafa Reisi Gahrooei |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL USA |
| authorships[2].institutions[0].id | https://openalex.org/I33213144 |
| authorships[2].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Florida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mostafa Reisi Gahrooei |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Florida, Gainesville, FL USA |
| authorships[3].author.id | https://openalex.org/A5061089512 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8705-2855 |
| authorships[3].author.display_name | Abbas Babajani‐Feremi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL USA |
| authorships[3].institutions[0].id | https://openalex.org/I33213144 |
| authorships[3].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Florida |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Abbas Babajani‐Feremi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Florida, Gainesville, FL USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1002/alz.089776 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Advanced brain age prediction using 3D convolutional neural network on structural MRI |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9803000092506409 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W4391621807, https://openalex.org/W4321487865, https://openalex.org/W4313906399, https://openalex.org/W4391621790, https://openalex.org/W4239306820, https://openalex.org/W4391266461, https://openalex.org/W2590798552, https://openalex.org/W2811106690, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1002/alz.089776 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S108427512 |
| best_oa_location.source.issn | 1552-5260, 1552-5279 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1552-5260 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Alzheimer s & Dementia |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Alzheimer's & Dementia |
| best_oa_location.landing_page_url | https://doi.org/10.1002/alz.089776 |
| primary_location.id | doi:10.1002/alz.089776 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S108427512 |
| primary_location.source.issn | 1552-5260, 1552-5279 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1552-5260 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Alzheimer s & Dementia |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Alzheimer's & Dementia |
| primary_location.landing_page_url | https://doi.org/10.1002/alz.089776 |
| publication_date | 2024-12-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.0 | 261 |
| abstract_inverted_index.1 | 239 |
| abstract_inverted_index.= | 98 |
| abstract_inverted_index.a | 134 |
| abstract_inverted_index.n | 97 |
| abstract_inverted_index.(P | 262, 293 |
| abstract_inverted_index.), | 266, 297 |
| abstract_inverted_index.1) | 102 |
| abstract_inverted_index.10 | 264, 295 |
| abstract_inverted_index.3D | 135, 209, 309 |
| abstract_inverted_index.AD | 196, 246, 292, 327 |
| abstract_inverted_index.AG | 223, 232, 250, 276 |
| abstract_inverted_index.CN | 182, 205, 218 |
| abstract_inverted_index.In | 243 |
| abstract_inverted_index.We | 44 |
| abstract_inverted_index.an | 9, 222, 230 |
| abstract_inverted_index.as | 198, 200 |
| abstract_inverted_index.in | 39, 117, 192, 216, 271, 304, 316, 324, 346 |
| abstract_inverted_index.is | 8, 26, 74 |
| abstract_inverted_index.of | 79, 96, 204, 224, 233, 277, 288, 302, 340 |
| abstract_inverted_index.on | 141, 181 |
| abstract_inverted_index.to | 113, 189, 344 |
| abstract_inverted_index.± | 226, 235 |
| abstract_inverted_index.1). | 242 |
| abstract_inverted_index.AD, | 122 |
| abstract_inverted_index.CNN | 210, 310 |
| abstract_inverted_index.DLB | 244, 290, 325 |
| abstract_inverted_index.MCI | 278, 305 |
| abstract_inverted_index.MRI | 94, 126 |
| abstract_inverted_index.Our | 308 |
| abstract_inverted_index.The | 12, 150, 175, 184, 208, 274, 329 |
| abstract_inverted_index.age | 4, 13, 20, 24, 116, 148, 191, 215, 315 |
| abstract_inverted_index.and | 22, 41, 57, 66, 82, 107, 123, 131, 163, 172, 179, 195, 229, 240, 245, 253, 257, 291, 320, 326, 338, 349 |
| abstract_inverted_index.for | 28, 76, 147, 165, 335 |
| abstract_inverted_index.gap | 14 |
| abstract_inverted_index.its | 333 |
| abstract_inverted_index.set | 203, 220 |
| abstract_inverted_index.the | 16, 104, 142, 201, 217, 248, 299 |
| abstract_inverted_index.was | 145, 177, 187, 251, 279, 283 |
| abstract_inverted_index.< | 263, 294 |
| abstract_inverted_index.(CA) | 21 |
| abstract_inverted_index.(CN) | 69 |
| abstract_inverted_index.(CN, | 120 |
| abstract_inverted_index.0.09 | 280 |
| abstract_inverted_index.0.64 | 225 |
| abstract_inverted_index.1.86 | 234 |
| abstract_inverted_index.2.11 | 236 |
| abstract_inverted_index.2.74 | 227 |
| abstract_inverted_index.2.90 | 254 |
| abstract_inverted_index.3.81 | 252 |
| abstract_inverted_index.ADNI | 108 |
| abstract_inverted_index.DLB, | 194 |
| abstract_inverted_index.Lewy | 54 |
| abstract_inverted_index.MCI, | 121, 193 |
| abstract_inverted_index.ReLU | 158 |
| abstract_inverted_index.Then | 133 |
| abstract_inverted_index.This | 71 |
| abstract_inverted_index.both | 289 |
| abstract_inverted_index.data | 7, 127, 144 |
| abstract_inverted_index.deep | 34 |
| abstract_inverted_index.four | 118 |
| abstract_inverted_index.from | 5, 103 |
| abstract_inverted_index.mild | 62 |
| abstract_inverted_index.test | 202, 219 |
| abstract_inverted_index.than | 260, 286 |
| abstract_inverted_index.that | 287 |
| abstract_inverted_index.this | 110 |
| abstract_inverted_index.used | 146, 188 |
| abstract_inverted_index.well | 199 |
| abstract_inverted_index.were | 128 |
| abstract_inverted_index.with | 47, 53, 157, 168, 221 |
| abstract_inverted_index.‐3 | 296 |
| abstract_inverted_index.‐5 | 265 |
| abstract_inverted_index.(AD), | 60 |
| abstract_inverted_index.(AG), | 15 |
| abstract_inverted_index.(BA), | 25 |
| abstract_inverted_index.(CNN) | 139 |
| abstract_inverted_index.(DLB) | 56 |
| abstract_inverted_index.(MCI) | 65 |
| abstract_inverted_index.3,859 | 99 |
| abstract_inverted_index.DLB). | 124 |
| abstract_inverted_index.NACC, | 106 |
| abstract_inverted_index.Table | 241 |
| abstract_inverted_index.aging | 85, 269, 323 |
| abstract_inverted_index.aimed | 112 |
| abstract_inverted_index.based | 140 |
| abstract_inverted_index.batch | 161 |
| abstract_inverted_index.brain | 3, 23, 115, 214, 314 |
| abstract_inverted_index.dense | 173 |
| abstract_inverted_index.early | 300, 336 |
| abstract_inverted_index.faced | 37 |
| abstract_inverted_index.model | 176, 186, 211, 311 |
| abstract_inverted_index.stage | 301 |
| abstract_inverted_index.study | 111 |
| abstract_inverted_index.these | 272 |
| abstract_inverted_index.three | 154 |
| abstract_inverted_index.which | 282 |
| abstract_inverted_index.years | 228, 237, 281 |
| abstract_inverted_index.(Table | 101 |
| abstract_inverted_index.Method | 91 |
| abstract_inverted_index.Neural | 137 |
| abstract_inverted_index.Result | 207 |
| abstract_inverted_index.across | 87 |
| abstract_inverted_index.aging. | 32 |
| abstract_inverted_index.bodies | 55 |
| abstract_inverted_index.ending | 167 |
| abstract_inverted_index.field. | 11 |
| abstract_inverted_index.global | 169 |
| abstract_inverted_index.groups | 119 |
| abstract_inverted_index.images | 95 |
| abstract_inverted_index.larger | 259 |
| abstract_inverted_index.layers | 156 |
| abstract_inverted_index.models | 36 |
| abstract_inverted_index.normal | 68, 318 |
| abstract_inverted_index.types, | 50 |
| abstract_inverted_index.years, | 255 |
| abstract_inverted_index.(Figure | 238 |
| abstract_inverted_index.CamCAN, | 105 |
| abstract_inverted_index.Network | 138 |
| abstract_inverted_index.average | 170, 249, 275 |
| abstract_inverted_index.between | 18 |
| abstract_inverted_index.crucial | 27 |
| abstract_inverted_index.disease | 59 |
| abstract_inverted_index.dropout | 164 |
| abstract_inverted_index.groups. | 273 |
| abstract_inverted_index.layers. | 174 |
| abstract_inverted_index.mapping | 78 |
| abstract_inverted_index.model's | 330 |
| abstract_inverted_index.pooling | 171 |
| abstract_inverted_index.predict | 114, 190 |
| abstract_inverted_index.smaller | 285 |
| abstract_inverted_index.spatial | 129 |
| abstract_inverted_index.trained | 178, 185 |
| abstract_inverted_index.various | 88 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Previous | 33 |
| abstract_inverted_index.absolute | 231 |
| abstract_inverted_index.clinical | 350 |
| abstract_inverted_index.dementia | 49, 52 |
| abstract_inverted_index.distinct | 84 |
| abstract_inverted_index.emerging | 10 |
| abstract_inverted_index.includes | 153 |
| abstract_inverted_index.learning | 35 |
| abstract_inverted_index.patients | 46, 197 |
| abstract_inverted_index.patterns | 86, 270 |
| abstract_inverted_index.research | 348 |
| abstract_inverted_index.strategy | 73 |
| abstract_inverted_index.subjects | 100 |
| abstract_inverted_index.Utilizing | 92 |
| abstract_inverted_index.alongside | 61 |
| abstract_inverted_index.cognitive | 63, 67, 89 |
| abstract_inverted_index.detection | 337 |
| abstract_inverted_index.different | 48 |
| abstract_inverted_index.essential | 75 |
| abstract_inverted_index.including | 51 |
| abstract_inverted_index.inclusive | 72 |
| abstract_inverted_index.model’s | 151 |
| abstract_inverted_index.patients, | 247 |
| abstract_inverted_index.patients. | 306, 328 |
| abstract_inverted_index.potential | 334 |
| abstract_inverted_index.precision | 331 |
| abstract_inverted_index.predicted | 213, 313 |
| abstract_inverted_index.subjects. | 183, 206 |
| abstract_inverted_index.validated | 180 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 307 |
| abstract_inverted_index.Predicting | 2 |
| abstract_inverted_index.Structural | 125 |
| abstract_inverted_index.accurately | 212, 312 |
| abstract_inverted_index.challenges | 38 |
| abstract_inverted_index.databases, | 109 |
| abstract_inverted_index.difference | 17 |
| abstract_inverted_index.highlights | 332 |
| abstract_inverted_index.identified | 321 |
| abstract_inverted_index.impairment | 64, 303 |
| abstract_inverted_index.indicating | 29, 267, 298 |
| abstract_inverted_index.individual | 30 |
| abstract_inverted_index.normalized | 130 |
| abstract_inverted_index.accelerated | 268, 322 |
| abstract_inverted_index.activation, | 159 |
| abstract_inverted_index.cognitively | 317 |
| abstract_inverted_index.conditions. | 90 |
| abstract_inverted_index.individuals | 319 |
| abstract_inverted_index.prediction. | 149 |
| abstract_inverted_index.advancements | 345 |
| abstract_inverted_index.architecture | 152 |
| abstract_inverted_index.contributing | 343 |
| abstract_inverted_index.diagnostics. | 351 |
| abstract_inverted_index.incorporated | 45 |
| abstract_inverted_index.individuals. | 70 |
| abstract_inverted_index.neuroimaging | 6 |
| abstract_inverted_index.neurological | 347 |
| abstract_inverted_index.trajectories | 81 |
| abstract_inverted_index.Alzheimer’s | 58 |
| abstract_inverted_index.Convolutional | 136 |
| abstract_inverted_index.T1‐weighted | 93 |
| abstract_inverted_index.chronological | 19 |
| abstract_inverted_index.comprehensive | 77 |
| abstract_inverted_index.convolutional | 155 |
| abstract_inverted_index.respectively, | 256 |
| abstract_inverted_index.significantly | 258, 284 |
| abstract_inverted_index.trajectories, | 342 |
| abstract_inverted_index.understanding | 83, 339 |
| abstract_inverted_index.max‐pooling, | 160 |
| abstract_inverted_index.neurocognitive | 80, 341 |
| abstract_inverted_index.normalization, | 162 |
| abstract_inverted_index.neuroanatomical | 31, 42 |
| abstract_inverted_index.regularization, | 166 |
| abstract_inverted_index.skull‐striped | 143 |
| abstract_inverted_index.generalizability | 40 |
| abstract_inverted_index.skull‐striped. | 132 |
| abstract_inverted_index.interpretability. | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.33800818 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |