Advances in developing deep neural networks for finding primary vertices in proton-proton collisions at the LHC Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.12417
We are studying the use of deep neural networks (DNNs) to identify and locate primary vertices (PVs) in proton-proton collisions at the LHC. Earlier work focused on finding primary vertices in simulated LHCb data using a hybrid approach that started with kernel density estimators (KDEs) derived heuristically from the ensemble of charged track parameters and predicted "target histogram" proxies, from which the actual PV positions are extracted. We have recently demonstrated that using a UNet architecture performs indistinguishably from a "flat" convolutional neural network model. We have developed an "end-to-end" tracks-to-hist DNN that predicts target histograms directly from track parameters using simulated LHCb data that provides better performance (a lower false positive rate for the same high efficiency) than the best KDE-to-hists model studied. This DNN also provides better efficiency than the default heuristic algorithm for the same low false positive rate. "Quantization" of this model, using FP16 rather than FP32 arithmetic, degrades its performance minimally. Reducing the number of UNet channels degrades performance more substantially. We have demonstrated that the KDE-to-hists algorithm developed for LHCb data can be adapted to ATLAS and ACTS data using two variations of the UNet architecture. Within ATLAS/ACTS, these algorithms have been validated against the standard vertex finder algorithm. Both variations produce PV-finding efficiencies similar to that of the standard algorithm and vertex-vertex separation resolutions that are significantly better.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.12417
- https://arxiv.org/pdf/2309.12417
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387030649
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387030649Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.12417Digital Object Identifier
- Title
-
Advances in developing deep neural networks for finding primary vertices in proton-proton collisions at the LHCWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-21Full publication date if available
- Authors
-
S. Akar, Mohamed Elashri, R. B. Garg, Elliott Kauffman, Michael A. Peters, Henry Schreiner, M. D. Sokoloff, William Tepe, L. TompkinsList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.12417Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.12417Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.12417Direct OA link when available
- Concepts
-
Large Hadron Collider, Vertex (graph theory), Convolutional neural network, Computer science, Estimator, Algorithm, Histogram, Artificial neural network, Quantization (signal processing), Artificial intelligence, Pattern recognition (psychology), Particle physics, Mathematics, Physics, Statistics, Theoretical computer science, Graph, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387030649 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.12417 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.12417 |
| ids.openalex | https://openalex.org/W4387030649 |
| fwci | |
| type | preprint |
| title | Advances in developing deep neural networks for finding primary vertices in proton-proton collisions at the LHC |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10048 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Particle physics theoretical and experimental studies |
| topics[1].id | https://openalex.org/T10527 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | High-Energy Particle Collisions Research |
| topics[2].id | https://openalex.org/T10224 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9679999947547913 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | Quantum Chromodynamics and Particle Interactions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87668248 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7932980060577393 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q40605 |
| concepts[0].display_name | Large Hadron Collider |
| concepts[1].id | https://openalex.org/C80899671 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5966408848762512 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1304193 |
| concepts[1].display_name | Vertex (graph theory) |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5691977739334106 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5549032092094421 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C185429906 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5473133325576782 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[4].display_name | Estimator |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5039882063865662 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C53533937 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5006558895111084 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q185020 |
| concepts[6].display_name | Histogram |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4631471335887909 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C28855332 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4488275349140167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q198099 |
| concepts[8].display_name | Quantization (signal processing) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35809677839279175 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.320556640625 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C109214941 |
| concepts[11].level | 1 |
| concepts[11].score | 0.30665820837020874 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[11].display_name | Particle physics |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2454719841480255 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.23865902423858643 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.16573098301887512 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C80444323 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10379746556282043 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[15].display_name | Theoretical computer science |
| concepts[16].id | https://openalex.org/C132525143 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[16].display_name | Graph |
| concepts[17].id | https://openalex.org/C115961682 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[17].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/large-hadron-collider |
| keywords[0].score | 0.7932980060577393 |
| keywords[0].display_name | Large Hadron Collider |
| keywords[1].id | https://openalex.org/keywords/vertex |
| keywords[1].score | 0.5966408848762512 |
| keywords[1].display_name | Vertex (graph theory) |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.5691977739334106 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5549032092094421 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/estimator |
| keywords[4].score | 0.5473133325576782 |
| keywords[4].display_name | Estimator |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.5039882063865662 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/histogram |
| keywords[6].score | 0.5006558895111084 |
| keywords[6].display_name | Histogram |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4631471335887909 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/quantization |
| keywords[8].score | 0.4488275349140167 |
| keywords[8].display_name | Quantization (signal processing) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.35809677839279175 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.320556640625 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/particle-physics |
| keywords[11].score | 0.30665820837020874 |
| keywords[11].display_name | Particle physics |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.2454719841480255 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.23865902423858643 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.16573098301887512 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[15].score | 0.10379746556282043 |
| keywords[15].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.12417 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.12417 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.12417 |
| locations[1].id | pmh:oai:cds.cern.ch:2871421 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306402194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | CERN Document Server (European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://cds.cern.ch/record/2871421 |
| locations[2].id | pmh:oai:edpsciences.org:dkey/10.1051/epjconf/202429509003 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400744 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[2].source.host_organization | https://openalex.org/I8488066 |
| locations[2].source.host_organization_name | Chiba Institute of Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | https://doi.org/10.1051/epjconf/202429509003 |
| locations[2].landing_page_url | |
| locations[3].id | doi:10.48550/arxiv.2309.12417 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2309.12417 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5090802371 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0288-9694 |
| authorships[0].author.display_name | S. Akar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akar, Simon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051989983 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9398-953X |
| authorships[1].author.display_name | Mohamed Elashri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Elashri, Mohamed |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030134245 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2691-7963 |
| authorships[2].author.display_name | R. B. Garg |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Garg, Rocky Bala |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5092938621 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Elliott Kauffman |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kauffman, Elliott |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5090163591 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1482-2975 |
| authorships[4].author.display_name | Michael A. Peters |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Peters, Michael |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5002103411 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7833-783X |
| authorships[5].author.display_name | Henry Schreiner |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Schreiner, Henry |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5107994778 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6181-4583 |
| authorships[6].author.display_name | M. D. Sokoloff |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sokoloff, Michael |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5012429556 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | William Tepe |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Tepe, William |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5004245545 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8127-9653 |
| authorships[8].author.display_name | L. Tompkins |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Tompkins, Lauren |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.12417 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Advances in developing deep neural networks for finding primary vertices in proton-proton collisions at the LHC |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10048 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Particle physics theoretical and experimental studies |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2031643159, https://openalex.org/W4382984329, https://openalex.org/W2895132917, https://openalex.org/W2919860591, https://openalex.org/W188003848, https://openalex.org/W3027795944, https://openalex.org/W171602090, https://openalex.org/W2323558309, https://openalex.org/W2950032071 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.12417 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.12417 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.12417 |
| primary_location.id | pmh:oai:arXiv.org:2309.12417 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.12417 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.12417 |
| publication_date | 2023-09-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 73, 79 |
| abstract_inverted_index.(a | 108 |
| abstract_inverted_index.PV | 63 |
| abstract_inverted_index.We | 0, 67, 85, 166 |
| abstract_inverted_index.an | 88 |
| abstract_inverted_index.at | 20 |
| abstract_inverted_index.be | 178 |
| abstract_inverted_index.in | 17, 30 |
| abstract_inverted_index.of | 5, 50, 143, 159, 188, 213 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 10, 180, 211 |
| abstract_inverted_index.DNN | 91, 125 |
| abstract_inverted_index.and | 12, 54, 182, 217 |
| abstract_inverted_index.are | 1, 65, 222 |
| abstract_inverted_index.can | 177 |
| abstract_inverted_index.for | 113, 135, 174 |
| abstract_inverted_index.its | 153 |
| abstract_inverted_index.low | 138 |
| abstract_inverted_index.the | 3, 21, 48, 61, 114, 119, 131, 136, 157, 170, 189, 200, 214 |
| abstract_inverted_index.two | 186 |
| abstract_inverted_index.use | 4 |
| abstract_inverted_index.ACTS | 183 |
| abstract_inverted_index.Both | 205 |
| abstract_inverted_index.FP16 | 147 |
| abstract_inverted_index.FP32 | 150 |
| abstract_inverted_index.LHC. | 22 |
| abstract_inverted_index.LHCb | 32, 102, 175 |
| abstract_inverted_index.This | 124 |
| abstract_inverted_index.UNet | 74, 160, 190 |
| abstract_inverted_index.also | 126 |
| abstract_inverted_index.been | 197 |
| abstract_inverted_index.best | 120 |
| abstract_inverted_index.data | 33, 103, 176, 184 |
| abstract_inverted_index.deep | 6 |
| abstract_inverted_index.from | 47, 59, 78, 97 |
| abstract_inverted_index.have | 68, 86, 167, 196 |
| abstract_inverted_index.high | 116 |
| abstract_inverted_index.more | 164 |
| abstract_inverted_index.rate | 112 |
| abstract_inverted_index.same | 115, 137 |
| abstract_inverted_index.than | 118, 130, 149 |
| abstract_inverted_index.that | 38, 71, 92, 104, 169, 212, 221 |
| abstract_inverted_index.this | 144 |
| abstract_inverted_index.with | 40 |
| abstract_inverted_index.work | 24 |
| abstract_inverted_index.(PVs) | 16 |
| abstract_inverted_index.ATLAS | 181 |
| abstract_inverted_index.false | 110, 139 |
| abstract_inverted_index.lower | 109 |
| abstract_inverted_index.model | 122 |
| abstract_inverted_index.rate. | 141 |
| abstract_inverted_index.these | 194 |
| abstract_inverted_index.track | 52, 98 |
| abstract_inverted_index.using | 34, 72, 100, 146, 185 |
| abstract_inverted_index.which | 60 |
| abstract_inverted_index."flat" | 80 |
| abstract_inverted_index.(DNNs) | 9 |
| abstract_inverted_index.(KDEs) | 44 |
| abstract_inverted_index.Within | 192 |
| abstract_inverted_index.actual | 62 |
| abstract_inverted_index.better | 106, 128 |
| abstract_inverted_index.finder | 203 |
| abstract_inverted_index.hybrid | 36 |
| abstract_inverted_index.kernel | 41 |
| abstract_inverted_index.locate | 13 |
| abstract_inverted_index.model, | 145 |
| abstract_inverted_index.model. | 84 |
| abstract_inverted_index.neural | 7, 82 |
| abstract_inverted_index.number | 158 |
| abstract_inverted_index.rather | 148 |
| abstract_inverted_index.target | 94 |
| abstract_inverted_index.vertex | 202 |
| abstract_inverted_index."target | 56 |
| abstract_inverted_index.Earlier | 23 |
| abstract_inverted_index.adapted | 179 |
| abstract_inverted_index.against | 199 |
| abstract_inverted_index.better. | 224 |
| abstract_inverted_index.charged | 51 |
| abstract_inverted_index.default | 132 |
| abstract_inverted_index.density | 42 |
| abstract_inverted_index.derived | 45 |
| abstract_inverted_index.finding | 27 |
| abstract_inverted_index.focused | 25 |
| abstract_inverted_index.network | 83 |
| abstract_inverted_index.primary | 14, 28 |
| abstract_inverted_index.produce | 207 |
| abstract_inverted_index.similar | 210 |
| abstract_inverted_index.started | 39 |
| abstract_inverted_index.Reducing | 156 |
| abstract_inverted_index.approach | 37 |
| abstract_inverted_index.channels | 161 |
| abstract_inverted_index.degrades | 152, 162 |
| abstract_inverted_index.directly | 96 |
| abstract_inverted_index.ensemble | 49 |
| abstract_inverted_index.identify | 11 |
| abstract_inverted_index.networks | 8 |
| abstract_inverted_index.performs | 76 |
| abstract_inverted_index.positive | 111, 140 |
| abstract_inverted_index.predicts | 93 |
| abstract_inverted_index.provides | 105, 127 |
| abstract_inverted_index.proxies, | 58 |
| abstract_inverted_index.recently | 69 |
| abstract_inverted_index.standard | 201, 215 |
| abstract_inverted_index.studied. | 123 |
| abstract_inverted_index.studying | 2 |
| abstract_inverted_index.vertices | 15, 29 |
| abstract_inverted_index.algorithm | 134, 172, 216 |
| abstract_inverted_index.developed | 87, 173 |
| abstract_inverted_index.heuristic | 133 |
| abstract_inverted_index.positions | 64 |
| abstract_inverted_index.predicted | 55 |
| abstract_inverted_index.simulated | 31, 101 |
| abstract_inverted_index.validated | 198 |
| abstract_inverted_index.PV-finding | 208 |
| abstract_inverted_index.algorithm. | 204 |
| abstract_inverted_index.algorithms | 195 |
| abstract_inverted_index.collisions | 19 |
| abstract_inverted_index.efficiency | 129 |
| abstract_inverted_index.estimators | 43 |
| abstract_inverted_index.extracted. | 66 |
| abstract_inverted_index.histogram" | 57 |
| abstract_inverted_index.histograms | 95 |
| abstract_inverted_index.minimally. | 155 |
| abstract_inverted_index.parameters | 53, 99 |
| abstract_inverted_index.separation | 219 |
| abstract_inverted_index.variations | 187, 206 |
| abstract_inverted_index.ATLAS/ACTS, | 193 |
| abstract_inverted_index.arithmetic, | 151 |
| abstract_inverted_index.efficiency) | 117 |
| abstract_inverted_index.performance | 107, 154, 163 |
| abstract_inverted_index.resolutions | 220 |
| abstract_inverted_index."end-to-end" | 89 |
| abstract_inverted_index.KDE-to-hists | 121, 171 |
| abstract_inverted_index.architecture | 75 |
| abstract_inverted_index.demonstrated | 70, 168 |
| abstract_inverted_index.efficiencies | 209 |
| abstract_inverted_index.architecture. | 191 |
| abstract_inverted_index.convolutional | 81 |
| abstract_inverted_index.heuristically | 46 |
| abstract_inverted_index.proton-proton | 18 |
| abstract_inverted_index.significantly | 223 |
| abstract_inverted_index.vertex-vertex | 218 |
| abstract_inverted_index."Quantization" | 142 |
| abstract_inverted_index.substantially. | 165 |
| abstract_inverted_index.tracks-to-hist | 90 |
| abstract_inverted_index.indistinguishably | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |