Advancing dairy farm simulations: A 2-step approach for tailored lactation curve estimation and its systemic impacts Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3168/jds.2025-26334
Lactation curve models are a foundational component of dairy farm simulation models because they support prediction of individual animal milk production over time. For farm simulation models to be applicable as decision-support tools, the predicted baseline milk production should match farm reported production as accurately as possible. However, individual animal lactation curve parameters are not easily accessible farm data. This study introduces a straightforward and effective calibration method for determining the parameters of Wood's lactation curve, leveraging a previously published database of parameters and 3 additional data inputs readily available on farms: annual herd milk production (AHMP), number of milking cows, and herd parity composition. Our method involves (1) adjusting curve parameters based on previously reported national estimates and farm contextual metadata (i.e., temporal, geographic, and management factors) and (2) further optimizing the scale parameter for each parity to match the 305-d milk yield derived from observed AHMP, number of milking cows, and herd parity composition. The Ruminant Farm Systems (RuFaS) model, a comprehensive dairy farm simulation platform, was employed to evaluate this method on 10 commercial Holstein dairy farms in New York (n = 3), Texas (n = 3), and Wisconsin (n = 4). By using lactation curve parameters estimated by this calibration method, we achieved greater accuracy in estimating AHMP with RuFaS for these case study farms, reducing the root mean square percentage error from 40.6% to 2.22%. To evaluate the downstream effects of lactation curve estimation methods within a farm systems context, we used the RuFaS Animal Module to simulate key performance and environmental metrics, including dry matter intake, enteric methane production, and manure excretion. We calculated gross feed efficiency and associated feed and manure emissions using emission factors derived from established literature. The results underscore the critical role of lactation curve modeling in dairy farm system simulation models and its substantial effects on environmental footprint predictions. In conclusion, this study demonstrates the effectiveness of our lactation curve parameter calibration method. With this method, farm system simulation models such as RuFaS can greatly increase their reliability in generating farm-specific predictions without requiring extensive farm data collection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3168/jds.2025-26334
- https://www.journalofdairyscience.org/action/showPdf?pii=S0022030225004187
- OA Status
- gold
- Cited By
- 2
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411196958
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411196958Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3168/jds.2025-26334Digital Object Identifier
- Title
-
Advancing dairy farm simulations: A 2-step approach for tailored lactation curve estimation and its systemic impactsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-11Full publication date if available
- Authors
-
Yubin Gong, Haowen Hu, K.F. Reed, Víctor E. CabreraList of authors in order
- Landing page
-
https://doi.org/10.3168/jds.2025-26334Publisher landing page
- PDF URL
-
https://www.journalofdairyscience.org/action/showPdf?pii=S0022030225004187Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.journalofdairyscience.org/action/showPdf?pii=S0022030225004187Direct OA link when available
- Concepts
-
Estimation, Lactation, Environmental science, Agricultural science, Economics, Biology, Pregnancy, Genetics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411196958 |
|---|---|
| doi | https://doi.org/10.3168/jds.2025-26334 |
| ids.doi | https://doi.org/10.3168/jds.2025-26334 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40513867 |
| ids.openalex | https://openalex.org/W4411196958 |
| fwci | 12.71696736 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000818 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Animals |
| mesh[1].qualifier_ui | Q000502 |
| mesh[1].descriptor_ui | D007774 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | physiology |
| mesh[1].descriptor_name | Lactation |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D002417 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Cattle |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D003612 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Dairying |
| mesh[5].qualifier_ui | Q000378 |
| mesh[5].descriptor_ui | D008892 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | metabolism |
| mesh[5].descriptor_name | Milk |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000072480 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Farms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D003198 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Computer Simulation |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000818 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Animals |
| mesh[9].qualifier_ui | Q000502 |
| mesh[9].descriptor_ui | D007774 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | physiology |
| mesh[9].descriptor_name | Lactation |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005260 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Female |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D002417 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Cattle |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D003612 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Dairying |
| mesh[13].qualifier_ui | Q000378 |
| mesh[13].descriptor_ui | D008892 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | metabolism |
| mesh[13].descriptor_name | Milk |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000072480 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Farms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D003198 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Computer Simulation |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000818 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Animals |
| mesh[17].qualifier_ui | Q000502 |
| mesh[17].descriptor_ui | D007774 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | physiology |
| mesh[17].descriptor_name | Lactation |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D005260 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Female |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D002417 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Cattle |
| mesh[20].qualifier_ui | Q000379 |
| mesh[20].descriptor_ui | D003612 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | methods |
| mesh[20].descriptor_name | Dairying |
| mesh[21].qualifier_ui | Q000378 |
| mesh[21].descriptor_ui | D008892 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | metabolism |
| mesh[21].descriptor_name | Milk |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000072480 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Farms |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D003198 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Computer Simulation |
| type | article |
| title | Advancing dairy farm simulations: A 2-step approach for tailored lactation curve estimation and its systemic impacts |
| awards[0].id | https://openalex.org/G8713216043 |
| awards[0].funder_id | https://openalex.org/F4320306114 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2020-68014-31466 |
| awards[0].funder_display_name | U.S. Department of Agriculture |
| biblio.issue | 9 |
| biblio.volume | 108 |
| biblio.last_page | 9695 |
| biblio.first_page | 9681 |
| topics[0].id | https://openalex.org/T10594 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9944999814033508 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic and phenotypic traits in livestock |
| topics[1].id | https://openalex.org/T11226 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1102 |
| topics[1].subfield.display_name | Agronomy and Crop Science |
| topics[1].display_name | Milk Quality and Mastitis in Dairy Cows |
| topics[2].id | https://openalex.org/T12365 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9828000068664551 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1103 |
| topics[2].subfield.display_name | Animal Science and Zoology |
| topics[2].display_name | Effects of Environmental Stressors on Livestock |
| funders[0].id | https://openalex.org/F4320306114 |
| funders[0].ror | https://ror.org/01na82s61 |
| funders[0].display_name | U.S. Department of Agriculture |
| funders[1].id | https://openalex.org/F4320309434 |
| funders[1].ror | https://ror.org/01y2jtd41 |
| funders[1].display_name | University of Wisconsin-Madison |
| funders[2].id | https://openalex.org/F4320309624 |
| funders[2].ror | https://ror.org/05bnh6r87 |
| funders[2].display_name | Cornell University |
| funders[3].id | https://openalex.org/F4320332126 |
| funders[3].ror | https://ror.org/01y2jtd41 |
| funders[3].display_name | College of Agricultural and Life Sciences |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid.value | 3500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3500 |
| concepts[0].id | https://openalex.org/C96250715 |
| concepts[0].level | 2 |
| concepts[0].score | 0.719928503036499 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[0].display_name | Estimation |
| concepts[1].id | https://openalex.org/C2776659692 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6254041194915771 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q719426 |
| concepts[1].display_name | Lactation |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.34126943349838257 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C37621935 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3274614214897156 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3606845 |
| concepts[3].display_name | Agricultural science |
| concepts[4].id | https://openalex.org/C162324750 |
| concepts[4].level | 0 |
| concepts[4].score | 0.23190832138061523 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[4].display_name | Economics |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.19761571288108826 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C2779234561 |
| concepts[6].level | 2 |
| concepts[6].score | 0.09058919548988342 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11995 |
| concepts[6].display_name | Pregnancy |
| concepts[7].id | https://openalex.org/C54355233 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[7].display_name | Genetics |
| concepts[8].id | https://openalex.org/C187736073 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[8].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/estimation |
| keywords[0].score | 0.719928503036499 |
| keywords[0].display_name | Estimation |
| keywords[1].id | https://openalex.org/keywords/lactation |
| keywords[1].score | 0.6254041194915771 |
| keywords[1].display_name | Lactation |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.34126943349838257 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/agricultural-science |
| keywords[3].score | 0.3274614214897156 |
| keywords[3].display_name | Agricultural science |
| keywords[4].id | https://openalex.org/keywords/economics |
| keywords[4].score | 0.23190832138061523 |
| keywords[4].display_name | Economics |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.19761571288108826 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/pregnancy |
| keywords[6].score | 0.09058919548988342 |
| keywords[6].display_name | Pregnancy |
| language | en |
| locations[0].id | doi:10.3168/jds.2025-26334 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S28349394 |
| locations[0].source.issn | 0022-0302, 1525-3198, 1529-9066 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0022-0302 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Dairy Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.journalofdairyscience.org/action/showPdf?pii=S0022030225004187 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Dairy Science |
| locations[0].landing_page_url | https://doi.org/10.3168/jds.2025-26334 |
| locations[1].id | pmid:40513867 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of dairy science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40513867 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5025099170 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3014-1309 |
| authorships[0].author.display_name | Yubin Gong |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Wisconsin-Madison, Madison, WI 53706. |
| authorships[0].institutions[0].id | https://openalex.org/I135310074 |
| authorships[0].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Y Gong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Wisconsin-Madison, Madison, WI 53706. |
| authorships[1].author.id | https://openalex.org/A5108638484 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-6538-8428 |
| authorships[1].author.display_name | Haowen Hu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[1].affiliations[0].raw_affiliation_string | Cornell University, Ithaca, NY 14850. |
| authorships[1].institutions[0].id | https://openalex.org/I205783295 |
| authorships[1].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Cornell University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | H Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cornell University, Ithaca, NY 14850. |
| authorships[2].author.id | https://openalex.org/A5051978856 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3936-6723 |
| authorships[2].author.display_name | K.F. Reed |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205783295, https://openalex.org/I4210143546 |
| authorships[2].affiliations[0].raw_affiliation_string | Cornell University, Ithaca, NY 14850; USDA-ARS Dairy Forage Research Center, Madison, WI 53706. |
| authorships[2].institutions[0].id | https://openalex.org/I205783295 |
| authorships[2].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Cornell University |
| authorships[2].institutions[1].id | https://openalex.org/I4210143546 |
| authorships[2].institutions[1].ror | https://ror.org/048zyw409 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210143546, https://openalex.org/I4210154632 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | U.S. Dairy Forage Research Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | K F Reed |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cornell University, Ithaca, NY 14850; USDA-ARS Dairy Forage Research Center, Madison, WI 53706. |
| authorships[3].author.id | https://openalex.org/A5042552181 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1739-7457 |
| authorships[3].author.display_name | Víctor E. Cabrera |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Wisconsin-Madison, Madison, WI 53706. Electronic address: [email protected]. |
| authorships[3].institutions[0].id | https://openalex.org/I135310074 |
| authorships[3].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | V E Cabrera |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Wisconsin-Madison, Madison, WI 53706. Electronic address: [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.journalofdairyscience.org/action/showPdf?pii=S0022030225004187 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-06-12T00:00:00 |
| display_name | Advancing dairy farm simulations: A 2-step approach for tailored lactation curve estimation and its systemic impacts |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10594 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9944999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic and phenotypic traits in livestock |
| related_works | https://openalex.org/W2185477163, https://openalex.org/W2955242350, https://openalex.org/W2338536663, https://openalex.org/W2083741761, https://openalex.org/W3135698608, https://openalex.org/W4233215445, https://openalex.org/W838309945, https://openalex.org/W2341980358, https://openalex.org/W2612866893, https://openalex.org/W2078107967 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3168/jds.2025-26334 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S28349394 |
| best_oa_location.source.issn | 0022-0302, 1525-3198, 1529-9066 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0022-0302 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Dairy Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.journalofdairyscience.org/action/showPdf?pii=S0022030225004187 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Dairy Science |
| best_oa_location.landing_page_url | https://doi.org/10.3168/jds.2025-26334 |
| primary_location.id | doi:10.3168/jds.2025-26334 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S28349394 |
| primary_location.source.issn | 0022-0302, 1525-3198, 1529-9066 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0022-0302 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Dairy Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.journalofdairyscience.org/action/showPdf?pii=S0022030225004187 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Dairy Science |
| primary_location.landing_page_url | https://doi.org/10.3168/jds.2025-26334 |
| publication_date | 2025-06-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2765084876, https://openalex.org/W6674385629, https://openalex.org/W1971048722, https://openalex.org/W2995533173, https://openalex.org/W2980422163, https://openalex.org/W4295927108, https://openalex.org/W3047893590, https://openalex.org/W2061023351, https://openalex.org/W2107411908, https://openalex.org/W6796083251, https://openalex.org/W3007413682, https://openalex.org/W4366998281, https://openalex.org/W4318542793, https://openalex.org/W6796047122, https://openalex.org/W2151425687, https://openalex.org/W6704031851, https://openalex.org/W4311584656, https://openalex.org/W2932568859, https://openalex.org/W4384700007, https://openalex.org/W4323823958, https://openalex.org/W4289527706, https://openalex.org/W2107066966, https://openalex.org/W1977558159, https://openalex.org/W2969740895, https://openalex.org/W2158619807, https://openalex.org/W4402050830, https://openalex.org/W3200910957, https://openalex.org/W7005601340, https://openalex.org/W3176055368, https://openalex.org/W2994975654, https://openalex.org/W2133831028, https://openalex.org/W2566992029, https://openalex.org/W3173317871, https://openalex.org/W2087639832, https://openalex.org/W1973712589, https://openalex.org/W3003257820, https://openalex.org/W3160706287, https://openalex.org/W2097998348, https://openalex.org/W2958834348, https://openalex.org/W3165750504, https://openalex.org/W4206650845, https://openalex.org/W3163417097 |
| referenced_works_count | 42 |
| abstract_inverted_index.3 | 84 |
| abstract_inverted_index.= | 184, 188, 193 |
| abstract_inverted_index.a | 4, 62, 77, 162, 241 |
| abstract_inverted_index.(n | 183, 187, 192 |
| abstract_inverted_index.10 | 175 |
| abstract_inverted_index.By | 195 |
| abstract_inverted_index.In | 310 |
| abstract_inverted_index.To | 230 |
| abstract_inverted_index.We | 268 |
| abstract_inverted_index.as | 30, 43, 45, 332 |
| abstract_inverted_index.be | 28 |
| abstract_inverted_index.by | 201 |
| abstract_inverted_index.in | 180, 209, 296, 339 |
| abstract_inverted_index.of | 7, 16, 72, 81, 98, 149, 235, 292, 317 |
| abstract_inverted_index.on | 90, 113, 174, 306 |
| abstract_inverted_index.to | 27, 138, 170, 228, 251 |
| abstract_inverted_index.we | 205, 245 |
| abstract_inverted_index.(1) | 108 |
| abstract_inverted_index.(2) | 129 |
| abstract_inverted_index.3), | 185, 189 |
| abstract_inverted_index.4). | 194 |
| abstract_inverted_index.For | 23 |
| abstract_inverted_index.New | 181 |
| abstract_inverted_index.Our | 105 |
| abstract_inverted_index.The | 156, 286 |
| abstract_inverted_index.and | 64, 83, 101, 118, 125, 128, 152, 190, 255, 265, 273, 276, 302 |
| abstract_inverted_index.are | 3, 53 |
| abstract_inverted_index.can | 334 |
| abstract_inverted_index.dry | 259 |
| abstract_inverted_index.for | 68, 135, 214 |
| abstract_inverted_index.its | 303 |
| abstract_inverted_index.key | 253 |
| abstract_inverted_index.not | 54 |
| abstract_inverted_index.our | 318 |
| abstract_inverted_index.the | 33, 70, 132, 140, 220, 232, 247, 289, 315 |
| abstract_inverted_index.was | 168 |
| abstract_inverted_index.AHMP | 211 |
| abstract_inverted_index.Farm | 158 |
| abstract_inverted_index.This | 59 |
| abstract_inverted_index.With | 324 |
| abstract_inverted_index.York | 182 |
| abstract_inverted_index.case | 216 |
| abstract_inverted_index.data | 86, 347 |
| abstract_inverted_index.each | 136 |
| abstract_inverted_index.farm | 9, 24, 40, 57, 119, 165, 242, 298, 327, 346 |
| abstract_inverted_index.feed | 271, 275 |
| abstract_inverted_index.from | 145, 226, 283 |
| abstract_inverted_index.herd | 93, 102, 153 |
| abstract_inverted_index.mean | 222 |
| abstract_inverted_index.milk | 19, 36, 94, 142 |
| abstract_inverted_index.over | 21 |
| abstract_inverted_index.role | 291 |
| abstract_inverted_index.root | 221 |
| abstract_inverted_index.such | 331 |
| abstract_inverted_index.they | 13 |
| abstract_inverted_index.this | 172, 202, 312, 325 |
| abstract_inverted_index.used | 246 |
| abstract_inverted_index.with | 212 |
| abstract_inverted_index.305-d | 141 |
| abstract_inverted_index.40.6% | 227 |
| abstract_inverted_index.AHMP, | 147 |
| abstract_inverted_index.RuFaS | 213, 248, 333 |
| abstract_inverted_index.Texas | 186 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.cows, | 100, 151 |
| abstract_inverted_index.curve | 1, 51, 110, 198, 237, 294, 320 |
| abstract_inverted_index.dairy | 8, 164, 178, 297 |
| abstract_inverted_index.data. | 58 |
| abstract_inverted_index.error | 225 |
| abstract_inverted_index.farms | 179 |
| abstract_inverted_index.gross | 270 |
| abstract_inverted_index.match | 39, 139 |
| abstract_inverted_index.scale | 133 |
| abstract_inverted_index.study | 60, 217, 313 |
| abstract_inverted_index.their | 337 |
| abstract_inverted_index.these | 215 |
| abstract_inverted_index.time. | 22 |
| abstract_inverted_index.using | 196, 279 |
| abstract_inverted_index.yield | 143 |
| abstract_inverted_index.(i.e., | 122 |
| abstract_inverted_index.2.22%. | 229 |
| abstract_inverted_index.Animal | 249 |
| abstract_inverted_index.Module | 250 |
| abstract_inverted_index.Wood's | 73 |
| abstract_inverted_index.animal | 18, 49 |
| abstract_inverted_index.annual | 92 |
| abstract_inverted_index.curve, | 75 |
| abstract_inverted_index.easily | 55 |
| abstract_inverted_index.farms, | 218 |
| abstract_inverted_index.farms: | 91 |
| abstract_inverted_index.inputs | 87 |
| abstract_inverted_index.manure | 266, 277 |
| abstract_inverted_index.matter | 260 |
| abstract_inverted_index.method | 67, 106, 173 |
| abstract_inverted_index.model, | 161 |
| abstract_inverted_index.models | 2, 11, 26, 301, 330 |
| abstract_inverted_index.number | 97, 148 |
| abstract_inverted_index.parity | 103, 137, 154 |
| abstract_inverted_index.should | 38 |
| abstract_inverted_index.square | 223 |
| abstract_inverted_index.system | 299, 328 |
| abstract_inverted_index.tools, | 32 |
| abstract_inverted_index.within | 240 |
| abstract_inverted_index.(AHMP), | 96 |
| abstract_inverted_index.(RuFaS) | 160 |
| abstract_inverted_index.Systems | 159 |
| abstract_inverted_index.because | 12 |
| abstract_inverted_index.derived | 144, 282 |
| abstract_inverted_index.effects | 234, 305 |
| abstract_inverted_index.enteric | 262 |
| abstract_inverted_index.factors | 281 |
| abstract_inverted_index.further | 130 |
| abstract_inverted_index.greater | 207 |
| abstract_inverted_index.greatly | 335 |
| abstract_inverted_index.intake, | 261 |
| abstract_inverted_index.methane | 263 |
| abstract_inverted_index.method, | 204, 326 |
| abstract_inverted_index.method. | 323 |
| abstract_inverted_index.methods | 239 |
| abstract_inverted_index.milking | 99, 150 |
| abstract_inverted_index.readily | 88 |
| abstract_inverted_index.results | 287 |
| abstract_inverted_index.support | 14 |
| abstract_inverted_index.systems | 243 |
| abstract_inverted_index.without | 343 |
| abstract_inverted_index.Holstein | 177 |
| abstract_inverted_index.However, | 47 |
| abstract_inverted_index.Ruminant | 157 |
| abstract_inverted_index.accuracy | 208 |
| abstract_inverted_index.achieved | 206 |
| abstract_inverted_index.baseline | 35 |
| abstract_inverted_index.context, | 244 |
| abstract_inverted_index.critical | 290 |
| abstract_inverted_index.database | 80 |
| abstract_inverted_index.emission | 280 |
| abstract_inverted_index.employed | 169 |
| abstract_inverted_index.evaluate | 171, 231 |
| abstract_inverted_index.factors) | 127 |
| abstract_inverted_index.increase | 336 |
| abstract_inverted_index.involves | 107 |
| abstract_inverted_index.metadata | 121 |
| abstract_inverted_index.metrics, | 257 |
| abstract_inverted_index.modeling | 295 |
| abstract_inverted_index.national | 116 |
| abstract_inverted_index.observed | 146 |
| abstract_inverted_index.reducing | 219 |
| abstract_inverted_index.reported | 41, 115 |
| abstract_inverted_index.simulate | 252 |
| abstract_inverted_index.Lactation | 0 |
| abstract_inverted_index.Wisconsin | 191 |
| abstract_inverted_index.adjusting | 109 |
| abstract_inverted_index.available | 89 |
| abstract_inverted_index.component | 6 |
| abstract_inverted_index.effective | 65 |
| abstract_inverted_index.emissions | 278 |
| abstract_inverted_index.estimated | 200 |
| abstract_inverted_index.estimates | 117 |
| abstract_inverted_index.extensive | 345 |
| abstract_inverted_index.footprint | 308 |
| abstract_inverted_index.including | 258 |
| abstract_inverted_index.lactation | 50, 74, 197, 236, 293, 319 |
| abstract_inverted_index.parameter | 134, 321 |
| abstract_inverted_index.platform, | 167 |
| abstract_inverted_index.possible. | 46 |
| abstract_inverted_index.predicted | 34 |
| abstract_inverted_index.published | 79 |
| abstract_inverted_index.requiring | 344 |
| abstract_inverted_index.temporal, | 123 |
| abstract_inverted_index.accessible | 56 |
| abstract_inverted_index.accurately | 44 |
| abstract_inverted_index.additional | 85 |
| abstract_inverted_index.applicable | 29 |
| abstract_inverted_index.associated | 274 |
| abstract_inverted_index.calculated | 269 |
| abstract_inverted_index.commercial | 176 |
| abstract_inverted_index.contextual | 120 |
| abstract_inverted_index.downstream | 233 |
| abstract_inverted_index.efficiency | 272 |
| abstract_inverted_index.estimating | 210 |
| abstract_inverted_index.estimation | 238 |
| abstract_inverted_index.excretion. | 267 |
| abstract_inverted_index.generating | 340 |
| abstract_inverted_index.individual | 17, 48 |
| abstract_inverted_index.introduces | 61 |
| abstract_inverted_index.leveraging | 76 |
| abstract_inverted_index.management | 126 |
| abstract_inverted_index.optimizing | 131 |
| abstract_inverted_index.parameters | 52, 71, 82, 111, 199 |
| abstract_inverted_index.percentage | 224 |
| abstract_inverted_index.prediction | 15 |
| abstract_inverted_index.previously | 78, 114 |
| abstract_inverted_index.production | 20, 37, 42, 95 |
| abstract_inverted_index.simulation | 10, 25, 166, 300, 329 |
| abstract_inverted_index.underscore | 288 |
| abstract_inverted_index.calibration | 66, 203, 322 |
| abstract_inverted_index.collection. | 348 |
| abstract_inverted_index.conclusion, | 311 |
| abstract_inverted_index.determining | 69 |
| abstract_inverted_index.established | 284 |
| abstract_inverted_index.geographic, | 124 |
| abstract_inverted_index.literature. | 285 |
| abstract_inverted_index.performance | 254 |
| abstract_inverted_index.predictions | 342 |
| abstract_inverted_index.production, | 264 |
| abstract_inverted_index.reliability | 338 |
| abstract_inverted_index.substantial | 304 |
| abstract_inverted_index.composition. | 104, 155 |
| abstract_inverted_index.demonstrates | 314 |
| abstract_inverted_index.foundational | 5 |
| abstract_inverted_index.predictions. | 309 |
| abstract_inverted_index.comprehensive | 163 |
| abstract_inverted_index.effectiveness | 316 |
| abstract_inverted_index.environmental | 256, 307 |
| abstract_inverted_index.farm-specific | 341 |
| abstract_inverted_index.straightforward | 63 |
| abstract_inverted_index.decision-support | 31 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.9563675 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |