Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1021/acs.jcim.5c00430
The versatility of multimodal deep learning holds tremendous promise for advancing scientific research and practical applications. As this field continues to evolve, the collective power of cross-modal analysis promises to drive transformative innovations, opening new frontiers in chemical understanding and drug discovery. Hence, we introduce asymmetric contrastive multimodal learning (ACML), a specifically designed approach to enhance molecular understanding and accelerate advancements in drug discovery. ACML harnesses the power of effective asymmetric contrastive learning to seamlessly transfer information from various chemical modalities to molecular graph representations. By combining pretrained chemical unimodal encoders and a shallow-designed graph encoder with 5 layers, ACML facilitates the assimilation of coordinated chemical semantics from different modalities, leading to comprehensive representation learning with efficient training. We demonstrate the effectiveness of this framework through large-scale cross-modality retrieval and isomer discrimination tasks. Additionally, ACML enhances interpretability by revealing chemical semantics in graph presentations and bolsters the expressive power of graph neural networks, as evidenced by improved performance in molecular property prediction tasks from MoleculeNet and Therapeutics Data Commons (TDC). Ultimately, ACML exemplifies its potential to revolutionize molecular representational learning, offering deeper insights into the chemical semantics of diverse modalities and paving the way for groundbreaking advancements in chemical research and drug discovery.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acs.jcim.5c00430
- OA Status
- hybrid
- Cited By
- 2
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411565709
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411565709Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acs.jcim.5c00430Digital Object Identifier
- Title
-
Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-23Full publication date if available
- Authors
-
Yifei Wang, Yingying Li, Lin Liu, Pengyu Hong, Hao XuList of authors in order
- Landing page
-
https://doi.org/10.1021/acs.jcim.5c00430Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1021/acs.jcim.5c00430Direct OA link when available
- Concepts
-
Drug discovery, Computer science, Drug, Natural language processing, Artificial intelligence, Data science, Psychology, Medicine, Pharmacology, Bioinformatics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411565709 |
|---|---|
| doi | https://doi.org/10.1021/acs.jcim.5c00430 |
| ids.doi | https://doi.org/10.1021/acs.jcim.5c00430 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40548496 |
| ids.openalex | https://openalex.org/W4411565709 |
| fwci | 10.03679086 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D055808 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Drug Discovery |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D055808 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Drug Discovery |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000077321 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Deep Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| type | article |
| title | Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning |
| awards[0].id | https://openalex.org/G3069889119 |
| awards[0].funder_id | https://openalex.org/F4320337377 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1920147 |
| awards[0].funder_display_name | Office of Advanced Cyberinfrastructure |
| biblio.issue | 13 |
| biblio.volume | 65 |
| biblio.last_page | 6557 |
| biblio.first_page | 6547 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.968999981880188 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T10911 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9664000272750854 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Chemical Synthesis and Analysis |
| funders[0].id | https://openalex.org/F4320337377 |
| funders[0].ror | https://ror.org/04nh1dc89 |
| funders[0].display_name | Office of Advanced Cyberinfrastructure |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C74187038 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7422710061073303 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1418791 |
| concepts[0].display_name | Drug discovery |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.476977676153183 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780035454 |
| concepts[2].level | 2 |
| concepts[2].score | 0.45442795753479004 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[2].display_name | Drug |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.35439950227737427 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3290434181690216 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3265429735183716 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.32256871461868286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.20874321460723877 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C98274493 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1696247160434723 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[8].display_name | Pharmacology |
| concepts[9].id | https://openalex.org/C60644358 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16153979301452637 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[9].display_name | Bioinformatics |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1455599069595337 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/drug-discovery |
| keywords[0].score | 0.7422710061073303 |
| keywords[0].display_name | Drug discovery |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.476977676153183 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/drug |
| keywords[2].score | 0.45442795753479004 |
| keywords[2].display_name | Drug |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.35439950227737427 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3290434181690216 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.3265429735183716 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.32256871461868286 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.20874321460723877 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/pharmacology |
| keywords[8].score | 0.1696247160434723 |
| keywords[8].display_name | Pharmacology |
| keywords[9].id | https://openalex.org/keywords/bioinformatics |
| keywords[9].score | 0.16153979301452637 |
| keywords[9].display_name | Bioinformatics |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.1455599069595337 |
| keywords[10].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1021/acs.jcim.5c00430 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S167262187 |
| locations[0].source.issn | 1549-9596, 1549-960X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1549-9596 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Chemical Information and Modeling |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Chemical Information and Modeling |
| locations[0].landing_page_url | https://doi.org/10.1021/acs.jcim.5c00430 |
| locations[1].id | pmid:40548496 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of chemical information and modeling |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40548496 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12264933 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Chem Inf Model |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12264933 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5100365594 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8295-5534 |
| authorships[0].author.display_name | Yifei Wang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I6902469 |
| authorships[0].affiliations[1].raw_affiliation_string | Brandeis University |
| authorships[0].institutions[0].id | https://openalex.org/I6902469 |
| authorships[0].institutions[0].ror | https://ror.org/05abbep66 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I6902469 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Brandeis University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yifei Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Brandeis University, Department of Computer Science |
| authorships[1].author.id | https://openalex.org/A5108931953 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2978-908X |
| authorships[1].author.display_name | Yingying Li |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I6902469 |
| authorships[1].affiliations[0].raw_affiliation_string | Brandeis University |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science |
| authorships[1].institutions[0].id | https://openalex.org/I6902469 |
| authorships[1].institutions[0].ror | https://ror.org/05abbep66 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I6902469 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Brandeis University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yunrui Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Brandeis University, Department of Computer Science |
| authorships[2].author.id | https://openalex.org/A5091763718 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7982-6005 |
| authorships[2].author.display_name | Lin Liu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Chemistry |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I97018004 |
| authorships[2].affiliations[1].raw_affiliation_string | Stanford University |
| authorships[2].institutions[0].id | https://openalex.org/I97018004 |
| authorships[2].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Stanford University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lin Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Chemistry, Stanford University |
| authorships[3].author.id | https://openalex.org/A5033168441 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3177-2754 |
| authorships[3].author.display_name | Pengyu Hong |
| authorships[3].countries | US |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I6902469 |
| authorships[3].affiliations[1].raw_affiliation_string | Brandeis University |
| authorships[3].institutions[0].id | https://openalex.org/I6902469 |
| authorships[3].institutions[0].ror | https://ror.org/05abbep66 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I6902469 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Brandeis University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pengyu Hong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Brandeis University, Department of Computer Science |
| authorships[4].author.id | https://openalex.org/A5078633718 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9795-5633 |
| authorships[4].author.display_name | Hao Xu |
| authorships[4].countries | MX, US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210148319 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Physics |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I136199984 |
| authorships[4].affiliations[2].raw_affiliation_string | Harvard Medical School |
| authorships[4].affiliations[3].institution_ids | https://openalex.org/I87182695 |
| authorships[4].affiliations[3].raw_affiliation_string | Northeastern University |
| authorships[4].affiliations[4].institution_ids | https://openalex.org/I12912129 |
| authorships[4].affiliations[4].raw_affiliation_string | Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States |
| authorships[4].institutions[0].id | https://openalex.org/I87182695 |
| authorships[4].institutions[0].ror | https://ror.org/02ahky613 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I87182695 |
| authorships[4].institutions[0].country_code | MX |
| authorships[4].institutions[0].display_name | Universidad del Noreste |
| authorships[4].institutions[1].id | https://openalex.org/I136199984 |
| authorships[4].institutions[1].ror | https://ror.org/03vek6s52 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I136199984 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Harvard University |
| authorships[4].institutions[2].id | https://openalex.org/I12912129 |
| authorships[4].institutions[2].ror | https://ror.org/04t5xt781 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I12912129 |
| authorships[4].institutions[2].country_code | US |
| authorships[4].institutions[2].display_name | Northeastern University |
| authorships[4].institutions[3].id | https://openalex.org/I4210148319 |
| authorships[4].institutions[3].ror | https://ror.org/05f9h3891 |
| authorships[4].institutions[3].type | healthcare |
| authorships[4].institutions[3].lineage | https://openalex.org/I4210148319 |
| authorships[4].institutions[3].country_code | US |
| authorships[4].institutions[3].display_name | Woman's Hospital |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hao Xu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States, Department of Physics, Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States, Harvard Medical School, Northeastern University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1021/acs.jcim.5c00430 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2480711475, https://openalex.org/W4206379684, https://openalex.org/W2061997414, https://openalex.org/W1587522533, https://openalex.org/W2366105490, https://openalex.org/W2153190755, https://openalex.org/W2580680567, https://openalex.org/W2803627340, https://openalex.org/W2121182182, https://openalex.org/W3204019825 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1021/acs.jcim.5c00430 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S167262187 |
| best_oa_location.source.issn | 1549-9596, 1549-960X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1549-9596 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Chemical Information and Modeling |
| best_oa_location.source.host_organization | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_name | American Chemical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_lineage_names | American Chemical Society |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Chemical Information and Modeling |
| best_oa_location.landing_page_url | https://doi.org/10.1021/acs.jcim.5c00430 |
| primary_location.id | doi:10.1021/acs.jcim.5c00430 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S167262187 |
| primary_location.source.issn | 1549-9596, 1549-960X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1549-9596 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Chemical Information and Modeling |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Chemical Information and Modeling |
| primary_location.landing_page_url | https://doi.org/10.1021/acs.jcim.5c00430 |
| publication_date | 2025-06-23 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4394606408, https://openalex.org/W4224035735, https://openalex.org/W2981851019, https://openalex.org/W4312933868, https://openalex.org/W3009928773, https://openalex.org/W3138683983, https://openalex.org/W4206042814, https://openalex.org/W4308885870, https://openalex.org/W4362579348, https://openalex.org/W4321370919, https://openalex.org/W3165630607, https://openalex.org/W3211951295, https://openalex.org/W4293821372, https://openalex.org/W4214868967, https://openalex.org/W4295846611, https://openalex.org/W4381679608, https://openalex.org/W3215187068, https://openalex.org/W2990623796, https://openalex.org/W3012107310, https://openalex.org/W4390456525, https://openalex.org/W4388623498, https://openalex.org/W4383888061, https://openalex.org/W4387579216, https://openalex.org/W4389100943, https://openalex.org/W3203895579, https://openalex.org/W1975147762, https://openalex.org/W4362598872, https://openalex.org/W4376270841, https://openalex.org/W4309218736, https://openalex.org/W4210737721, https://openalex.org/W4393371966, https://openalex.org/W3116202926, https://openalex.org/W3087318293, https://openalex.org/W3153673236, https://openalex.org/W4285078220, https://openalex.org/W4304731455, https://openalex.org/W4315646977, https://openalex.org/W4366366661, https://openalex.org/W2964007201, https://openalex.org/W2773405722, https://openalex.org/W2096733369, https://openalex.org/W4362471278, https://openalex.org/W4402352439, https://openalex.org/W2075843680, https://openalex.org/W3174146526, https://openalex.org/W1981276685, https://openalex.org/W2594183968, https://openalex.org/W4296551289, https://openalex.org/W3100078588, https://openalex.org/W3211728852, https://openalex.org/W4307468223, https://openalex.org/W4300563891 |
| referenced_works_count | 52 |
| abstract_inverted_index.5 | 97 |
| abstract_inverted_index.a | 50, 92 |
| abstract_inverted_index.As | 16 |
| abstract_inverted_index.By | 85 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.as | 153 |
| abstract_inverted_index.by | 137, 155 |
| abstract_inverted_index.in | 36, 61, 141, 158, 197 |
| abstract_inverted_index.of | 2, 25, 68, 103, 122, 149, 187 |
| abstract_inverted_index.to | 20, 29, 54, 73, 81, 111, 175 |
| abstract_inverted_index.we | 43 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 13, 39, 58, 91, 129, 144, 165, 190, 200 |
| abstract_inverted_index.for | 9, 194 |
| abstract_inverted_index.its | 173 |
| abstract_inverted_index.new | 34 |
| abstract_inverted_index.the | 22, 66, 101, 120, 146, 184, 192 |
| abstract_inverted_index.way | 193 |
| abstract_inverted_index.ACML | 64, 99, 134, 171 |
| abstract_inverted_index.Data | 167 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.drug | 40, 62, 201 |
| abstract_inverted_index.from | 77, 107, 163 |
| abstract_inverted_index.into | 183 |
| abstract_inverted_index.this | 17, 123 |
| abstract_inverted_index.with | 96, 115 |
| abstract_inverted_index.drive | 30 |
| abstract_inverted_index.field | 18 |
| abstract_inverted_index.graph | 83, 94, 142, 150 |
| abstract_inverted_index.holds | 6 |
| abstract_inverted_index.power | 24, 67, 148 |
| abstract_inverted_index.tasks | 162 |
| abstract_inverted_index.(TDC). | 169 |
| abstract_inverted_index.Hence, | 42 |
| abstract_inverted_index.deeper | 181 |
| abstract_inverted_index.isomer | 130 |
| abstract_inverted_index.neural | 151 |
| abstract_inverted_index.paving | 191 |
| abstract_inverted_index.tasks. | 132 |
| abstract_inverted_index.(ACML), | 49 |
| abstract_inverted_index.Commons | 168 |
| abstract_inverted_index.diverse | 188 |
| abstract_inverted_index.encoder | 95 |
| abstract_inverted_index.enhance | 55 |
| abstract_inverted_index.evolve, | 21 |
| abstract_inverted_index.layers, | 98 |
| abstract_inverted_index.leading | 110 |
| abstract_inverted_index.opening | 33 |
| abstract_inverted_index.promise | 8 |
| abstract_inverted_index.through | 125 |
| abstract_inverted_index.various | 78 |
| abstract_inverted_index.analysis | 27 |
| abstract_inverted_index.approach | 53 |
| abstract_inverted_index.bolsters | 145 |
| abstract_inverted_index.chemical | 37, 79, 88, 105, 139, 185, 198 |
| abstract_inverted_index.designed | 52 |
| abstract_inverted_index.encoders | 90 |
| abstract_inverted_index.enhances | 135 |
| abstract_inverted_index.improved | 156 |
| abstract_inverted_index.insights | 182 |
| abstract_inverted_index.learning | 5, 48, 72, 114 |
| abstract_inverted_index.offering | 180 |
| abstract_inverted_index.promises | 28 |
| abstract_inverted_index.property | 160 |
| abstract_inverted_index.research | 12, 199 |
| abstract_inverted_index.transfer | 75 |
| abstract_inverted_index.unimodal | 89 |
| abstract_inverted_index.advancing | 10 |
| abstract_inverted_index.combining | 86 |
| abstract_inverted_index.continues | 19 |
| abstract_inverted_index.different | 108 |
| abstract_inverted_index.effective | 69 |
| abstract_inverted_index.efficient | 116 |
| abstract_inverted_index.evidenced | 154 |
| abstract_inverted_index.framework | 124 |
| abstract_inverted_index.frontiers | 35 |
| abstract_inverted_index.harnesses | 65 |
| abstract_inverted_index.introduce | 44 |
| abstract_inverted_index.learning, | 179 |
| abstract_inverted_index.molecular | 56, 82, 159, 177 |
| abstract_inverted_index.networks, | 152 |
| abstract_inverted_index.potential | 174 |
| abstract_inverted_index.practical | 14 |
| abstract_inverted_index.retrieval | 128 |
| abstract_inverted_index.revealing | 138 |
| abstract_inverted_index.semantics | 106, 140, 186 |
| abstract_inverted_index.training. | 117 |
| abstract_inverted_index.accelerate | 59 |
| abstract_inverted_index.asymmetric | 45, 70 |
| abstract_inverted_index.collective | 23 |
| abstract_inverted_index.discovery. | 41, 63, 202 |
| abstract_inverted_index.expressive | 147 |
| abstract_inverted_index.modalities | 80, 189 |
| abstract_inverted_index.multimodal | 3, 47 |
| abstract_inverted_index.prediction | 161 |
| abstract_inverted_index.pretrained | 87 |
| abstract_inverted_index.scientific | 11 |
| abstract_inverted_index.seamlessly | 74 |
| abstract_inverted_index.tremendous | 7 |
| abstract_inverted_index.MoleculeNet | 164 |
| abstract_inverted_index.Ultimately, | 170 |
| abstract_inverted_index.contrastive | 46, 71 |
| abstract_inverted_index.coordinated | 104 |
| abstract_inverted_index.cross-modal | 26 |
| abstract_inverted_index.demonstrate | 119 |
| abstract_inverted_index.exemplifies | 172 |
| abstract_inverted_index.facilitates | 100 |
| abstract_inverted_index.information | 76 |
| abstract_inverted_index.large-scale | 126 |
| abstract_inverted_index.modalities, | 109 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.versatility | 1 |
| abstract_inverted_index.Therapeutics | 166 |
| abstract_inverted_index.advancements | 60, 196 |
| abstract_inverted_index.assimilation | 102 |
| abstract_inverted_index.innovations, | 32 |
| abstract_inverted_index.specifically | 51 |
| abstract_inverted_index.Additionally, | 133 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.comprehensive | 112 |
| abstract_inverted_index.effectiveness | 121 |
| abstract_inverted_index.presentations | 143 |
| abstract_inverted_index.revolutionize | 176 |
| abstract_inverted_index.understanding | 38, 57 |
| abstract_inverted_index.cross-modality | 127 |
| abstract_inverted_index.discrimination | 131 |
| abstract_inverted_index.groundbreaking | 195 |
| abstract_inverted_index.representation | 113 |
| abstract_inverted_index.transformative | 31 |
| abstract_inverted_index.interpretability | 136 |
| abstract_inverted_index.representational | 178 |
| abstract_inverted_index.representations. | 84 |
| abstract_inverted_index.shallow-designed | 93 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5078633718 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I12912129, https://openalex.org/I136199984, https://openalex.org/I4210148319, https://openalex.org/I87182695 |
| citation_normalized_percentile.value | 0.95579491 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |