Advancing Electric Load Forecasting: Leveraging Federated Learning for Distributed, Non-Stationary, and Discontinuous Time Series Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/smartcities7040082
In line with several European directives, residents are strongly encouraged to invest in renewable power plants and flexible consumption systems, enabling them to share energy within their Renewable Energy Community at lower procurement costs. This, along with the ability for residents to switch between such communities on a daily basis, leads to dynamic portfolios, resulting in non-stationary and discontinuous electrical load time series. Given poor predictability as well as insufficient examination of such characteristics, and the critical importance of electrical load forecasting in energy management systems, we propose a novel forecasting framework using Federated Learning to leverage information from multiple distributed communities, enabling the learning of domain-invariant features. To achieve this, we initially utilize synthetic electrical load time series at district level and aggregate them to profiles of Renewable Energy Communities with dynamic portfolios. Subsequently, we develop a forecasting model that accounts for the composition of residents of a Renewable Energy Community, adapt data pre-processing in accordance with the time series process, and detail a federated learning algorithm that incorporates weight averaging and data sharing. Following the training of various experimental setups, we evaluate their effectiveness by applying different tests for white noise in the forecast error signal. The findings suggest that our proposed framework is capable of effectively forecast non-stationary as well as discontinuous time series, extract domain-invariant features, and is applicable to new, unseen data through the integration of knowledge from multiple sources.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/smartcities7040082
- OA Status
- gold
- Cited By
- 6
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401242579
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401242579Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/smartcities7040082Digital Object Identifier
- Title
-
Advancing Electric Load Forecasting: Leveraging Federated Learning for Distributed, Non-Stationary, and Discontinuous Time SeriesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-28Full publication date if available
- Authors
-
Lucas Richter, Steve Lenk, Peter BretschneiderList of authors in order
- Landing page
-
https://doi.org/10.3390/smartcities7040082Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/smartcities7040082Direct OA link when available
- Concepts
-
Series (stratigraphy), Computer science, Time series, Distributed computing, Industrial engineering, Machine learning, Engineering, Geology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401242579 |
|---|---|
| doi | https://doi.org/10.3390/smartcities7040082 |
| ids.doi | https://doi.org/10.3390/smartcities7040082 |
| ids.openalex | https://openalex.org/W4401242579 |
| fwci | 2.21501084 |
| type | article |
| title | Advancing Electric Load Forecasting: Leveraging Federated Learning for Distributed, Non-Stationary, and Discontinuous Time Series |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 2093 |
| biblio.first_page | 2065 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T11344 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Traffic Prediction and Management Techniques |
| topics[2].id | https://openalex.org/T13429 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9905999898910522 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electricity Theft Detection Techniques |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C143724316 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6681208610534668 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[0].display_name | Series (stratigraphy) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6257543563842773 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C151406439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5230047106742859 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[2].display_name | Time series |
| concepts[3].id | https://openalex.org/C120314980 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4036244750022888 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[3].display_name | Distributed computing |
| concepts[4].id | https://openalex.org/C13736549 |
| concepts[4].level | 1 |
| concepts[4].score | 0.338278204202652 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4489420 |
| concepts[4].display_name | Industrial engineering |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.24467292428016663 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.12904247641563416 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.08431577682495117 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C151730666 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[8].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/series |
| keywords[0].score | 0.6681208610534668 |
| keywords[0].display_name | Series (stratigraphy) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6257543563842773 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/time-series |
| keywords[2].score | 0.5230047106742859 |
| keywords[2].display_name | Time series |
| keywords[3].id | https://openalex.org/keywords/distributed-computing |
| keywords[3].score | 0.4036244750022888 |
| keywords[3].display_name | Distributed computing |
| keywords[4].id | https://openalex.org/keywords/industrial-engineering |
| keywords[4].score | 0.338278204202652 |
| keywords[4].display_name | Industrial engineering |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.24467292428016663 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.12904247641563416 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.08431577682495117 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/smartcities7040082 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210184358 |
| locations[0].source.issn | 2624-6511 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-6511 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Smart Cities |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Smart Cities |
| locations[0].landing_page_url | https://doi.org/10.3390/smartcities7040082 |
| locations[1].id | pmh:oai:doaj.org/article:ccea79f98ede4b28a5c53cfa713106ca |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Smart Cities, Vol 7, Iss 4, Pp 2065-2093 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/ccea79f98ede4b28a5c53cfa713106ca |
| locations[2].id | pmh:oai:null:publica/475562 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | journal article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://publica.fraunhofer.de/handle/publica/475562 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5028594370 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Lucas Richter |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210111500 |
| authorships[0].affiliations[0].raw_affiliation_string | Fraunhofer IOSB—Applied System Technology, Am Vogelherd 90, 98693 Ilmenau, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210111500 |
| authorships[0].institutions[0].ror | https://ror.org/01zx97922 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210111500, https://openalex.org/I4923324 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Fraunhofer Institute of Optronics, System Technologies and Image Exploitation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lucas Richter |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Fraunhofer IOSB—Applied System Technology, Am Vogelherd 90, 98693 Ilmenau, Germany |
| authorships[1].author.id | https://openalex.org/A5037121830 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3376-0589 |
| authorships[1].author.display_name | Steve Lenk |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210111500 |
| authorships[1].affiliations[0].raw_affiliation_string | Fraunhofer IOSB—Applied System Technology, Am Vogelherd 90, 98693 Ilmenau, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210111500 |
| authorships[1].institutions[0].ror | https://ror.org/01zx97922 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210111500, https://openalex.org/I4923324 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Fraunhofer Institute of Optronics, System Technologies and Image Exploitation |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Steve Lenk |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Fraunhofer IOSB—Applied System Technology, Am Vogelherd 90, 98693 Ilmenau, Germany |
| authorships[2].author.id | https://openalex.org/A5111707928 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Peter Bretschneider |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I119449181 |
| authorships[2].affiliations[0].raw_affiliation_string | TU Ilmenau—Energy Usage Optimization, Ehrenbergstraße 29, 98693 Ilmenau, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I119449181 |
| authorships[2].institutions[0].ror | https://ror.org/01weqhp73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I119449181 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Technische Universität Ilmenau |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Peter Bretschneider |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | TU Ilmenau—Energy Usage Optimization, Ehrenbergstraße 29, 98693 Ilmenau, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/smartcities7040082 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Advancing Electric Load Forecasting: Leveraging Federated Learning for Distributed, Non-Stationary, and Discontinuous Time Series |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/smartcities7040082 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210184358 |
| best_oa_location.source.issn | 2624-6511 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-6511 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Smart Cities |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Smart Cities |
| best_oa_location.landing_page_url | https://doi.org/10.3390/smartcities7040082 |
| primary_location.id | doi:10.3390/smartcities7040082 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210184358 |
| primary_location.source.issn | 2624-6511 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-6511 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Smart Cities |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Smart Cities |
| primary_location.landing_page_url | https://doi.org/10.3390/smartcities7040082 |
| publication_date | 2024-07-28 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4391589415, https://openalex.org/W6686352564, https://openalex.org/W2195203952, https://openalex.org/W4229029298, https://openalex.org/W7036125756, https://openalex.org/W4393255206, https://openalex.org/W2949449669, https://openalex.org/W3125531171, https://openalex.org/W3033570478, https://openalex.org/W3202281568, https://openalex.org/W3105138264, https://openalex.org/W2804243520, https://openalex.org/W3145208339, https://openalex.org/W3045941597, https://openalex.org/W3214919557, https://openalex.org/W2006366850, https://openalex.org/W2515822248, https://openalex.org/W2005754542, https://openalex.org/W4312085358, https://openalex.org/W2303675556, https://openalex.org/W4287219555, https://openalex.org/W2751528152, https://openalex.org/W4224312993, https://openalex.org/W4285180318, https://openalex.org/W4313459210, https://openalex.org/W3179327475, https://openalex.org/W4304118900, https://openalex.org/W3196371845, https://openalex.org/W4253150258, https://openalex.org/W4311256626, https://openalex.org/W4361277822, https://openalex.org/W4387353472, https://openalex.org/W2184495610 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 47, 88, 137, 148, 164 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 108 |
| abstract_inverted_index.as | 66, 68, 211, 213 |
| abstract_inverted_index.at | 30, 119 |
| abstract_inverted_index.by | 186 |
| abstract_inverted_index.in | 12, 55, 82, 155, 193 |
| abstract_inverted_index.is | 205, 221 |
| abstract_inverted_index.of | 71, 78, 105, 127, 145, 147, 178, 207, 230 |
| abstract_inverted_index.on | 46 |
| abstract_inverted_index.to | 10, 22, 41, 51, 95, 125, 223 |
| abstract_inverted_index.we | 86, 111, 135, 182 |
| abstract_inverted_index.The | 198 |
| abstract_inverted_index.and | 16, 57, 74, 122, 162, 172, 220 |
| abstract_inverted_index.are | 7 |
| abstract_inverted_index.for | 39, 142, 190 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.the | 37, 75, 103, 143, 158, 176, 194, 228 |
| abstract_inverted_index.data | 153, 173, 226 |
| abstract_inverted_index.from | 98, 232 |
| abstract_inverted_index.line | 1 |
| abstract_inverted_index.load | 60, 80, 116 |
| abstract_inverted_index.new, | 224 |
| abstract_inverted_index.poor | 64 |
| abstract_inverted_index.such | 44, 72 |
| abstract_inverted_index.that | 140, 168, 201 |
| abstract_inverted_index.them | 21, 124 |
| abstract_inverted_index.time | 61, 117, 159, 215 |
| abstract_inverted_index.well | 67, 212 |
| abstract_inverted_index.with | 2, 36, 131, 157 |
| abstract_inverted_index.Given | 63 |
| abstract_inverted_index.This, | 34 |
| abstract_inverted_index.adapt | 152 |
| abstract_inverted_index.along | 35 |
| abstract_inverted_index.daily | 48 |
| abstract_inverted_index.error | 196 |
| abstract_inverted_index.leads | 50 |
| abstract_inverted_index.level | 121 |
| abstract_inverted_index.lower | 31 |
| abstract_inverted_index.model | 139 |
| abstract_inverted_index.noise | 192 |
| abstract_inverted_index.novel | 89 |
| abstract_inverted_index.power | 14 |
| abstract_inverted_index.share | 23 |
| abstract_inverted_index.tests | 189 |
| abstract_inverted_index.their | 26, 184 |
| abstract_inverted_index.this, | 110 |
| abstract_inverted_index.using | 92 |
| abstract_inverted_index.white | 191 |
| abstract_inverted_index.Energy | 28, 129, 150 |
| abstract_inverted_index.basis, | 49 |
| abstract_inverted_index.costs. | 33 |
| abstract_inverted_index.detail | 163 |
| abstract_inverted_index.energy | 24, 83 |
| abstract_inverted_index.invest | 11 |
| abstract_inverted_index.plants | 15 |
| abstract_inverted_index.series | 118, 160 |
| abstract_inverted_index.switch | 42 |
| abstract_inverted_index.unseen | 225 |
| abstract_inverted_index.weight | 170 |
| abstract_inverted_index.within | 25 |
| abstract_inverted_index.ability | 38 |
| abstract_inverted_index.achieve | 109 |
| abstract_inverted_index.between | 43 |
| abstract_inverted_index.capable | 206 |
| abstract_inverted_index.develop | 136 |
| abstract_inverted_index.dynamic | 52, 132 |
| abstract_inverted_index.extract | 217 |
| abstract_inverted_index.propose | 87 |
| abstract_inverted_index.series, | 216 |
| abstract_inverted_index.series. | 62 |
| abstract_inverted_index.setups, | 181 |
| abstract_inverted_index.several | 3 |
| abstract_inverted_index.signal. | 197 |
| abstract_inverted_index.suggest | 200 |
| abstract_inverted_index.through | 227 |
| abstract_inverted_index.utilize | 113 |
| abstract_inverted_index.various | 179 |
| abstract_inverted_index.European | 4 |
| abstract_inverted_index.Learning | 94 |
| abstract_inverted_index.accounts | 141 |
| abstract_inverted_index.applying | 187 |
| abstract_inverted_index.critical | 76 |
| abstract_inverted_index.district | 120 |
| abstract_inverted_index.enabling | 20, 102 |
| abstract_inverted_index.evaluate | 183 |
| abstract_inverted_index.findings | 199 |
| abstract_inverted_index.flexible | 17 |
| abstract_inverted_index.forecast | 195, 209 |
| abstract_inverted_index.learning | 104, 166 |
| abstract_inverted_index.leverage | 96 |
| abstract_inverted_index.multiple | 99, 233 |
| abstract_inverted_index.process, | 161 |
| abstract_inverted_index.profiles | 126 |
| abstract_inverted_index.proposed | 203 |
| abstract_inverted_index.sharing. | 174 |
| abstract_inverted_index.sources. | 234 |
| abstract_inverted_index.strongly | 8 |
| abstract_inverted_index.systems, | 19, 85 |
| abstract_inverted_index.training | 177 |
| abstract_inverted_index.Community | 29 |
| abstract_inverted_index.Federated | 93 |
| abstract_inverted_index.Following | 175 |
| abstract_inverted_index.Renewable | 27, 128, 149 |
| abstract_inverted_index.aggregate | 123 |
| abstract_inverted_index.algorithm | 167 |
| abstract_inverted_index.averaging | 171 |
| abstract_inverted_index.different | 188 |
| abstract_inverted_index.features, | 219 |
| abstract_inverted_index.features. | 107 |
| abstract_inverted_index.federated | 165 |
| abstract_inverted_index.framework | 91, 204 |
| abstract_inverted_index.initially | 112 |
| abstract_inverted_index.knowledge | 231 |
| abstract_inverted_index.renewable | 13 |
| abstract_inverted_index.residents | 6, 40, 146 |
| abstract_inverted_index.resulting | 54 |
| abstract_inverted_index.synthetic | 114 |
| abstract_inverted_index.Community, | 151 |
| abstract_inverted_index.accordance | 156 |
| abstract_inverted_index.applicable | 222 |
| abstract_inverted_index.electrical | 59, 79, 115 |
| abstract_inverted_index.encouraged | 9 |
| abstract_inverted_index.importance | 77 |
| abstract_inverted_index.management | 84 |
| abstract_inverted_index.Communities | 130 |
| abstract_inverted_index.communities | 45 |
| abstract_inverted_index.composition | 144 |
| abstract_inverted_index.consumption | 18 |
| abstract_inverted_index.directives, | 5 |
| abstract_inverted_index.distributed | 100 |
| abstract_inverted_index.effectively | 208 |
| abstract_inverted_index.examination | 70 |
| abstract_inverted_index.forecasting | 81, 90, 138 |
| abstract_inverted_index.information | 97 |
| abstract_inverted_index.integration | 229 |
| abstract_inverted_index.portfolios, | 53 |
| abstract_inverted_index.portfolios. | 133 |
| abstract_inverted_index.procurement | 32 |
| abstract_inverted_index.communities, | 101 |
| abstract_inverted_index.experimental | 180 |
| abstract_inverted_index.incorporates | 169 |
| abstract_inverted_index.insufficient | 69 |
| abstract_inverted_index.Subsequently, | 134 |
| abstract_inverted_index.discontinuous | 58, 214 |
| abstract_inverted_index.effectiveness | 185 |
| abstract_inverted_index.non-stationary | 56, 210 |
| abstract_inverted_index.pre-processing | 154 |
| abstract_inverted_index.predictability | 65 |
| abstract_inverted_index.characteristics, | 73 |
| abstract_inverted_index.domain-invariant | 106, 218 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5028594370 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210111500 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.84949935 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |