Advancing Histopathology with Deep Learning Under Data Scarcity: A Decade in Review Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.19820
Recent years witnessed remarkable progress in computational histopathology, largely fueled by deep learning. This brought the clinical adoption of deep learning-based tools within reach, promising significant benefits to healthcare, offering a valuable second opinion on diagnoses, streamlining complex tasks, and mitigating the risks of inconsistency and bias in clinical decisions. However, a well-known challenge is that deep learning models may contain up to billions of parameters; supervising their training effectively would require vast labeled datasets to achieve reliable generalization and noise resilience. In medical imaging, particularly histopathology, amassing such extensive labeled data collections places additional demands on clinicians and incurs higher costs, which hinders the art's progress. Addressing this challenge, researchers devised various strategies for leveraging deep learning with limited data and annotation availability. In this paper, we present a comprehensive review of deep learning applications in histopathology, with a focus on the challenges posed by data scarcity over the past decade. We systematically categorize and compare various approaches, evaluate their distinct contributions using benchmarking tables, and highlight their respective advantages and limitations. Additionally, we address gaps in existing reviews and identify underexplored research opportunities, underscoring the potential for future advancements in this field.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.19820
- https://arxiv.org/pdf/2410.19820
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404313480
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404313480Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.19820Digital Object Identifier
- Title
-
Advancing Histopathology with Deep Learning Under Data Scarcity: A Decade in ReviewWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-18Full publication date if available
- Authors
-
Ahmad Obeid, Said Boumaraf, Anabia Sohail, Taimur Hassan, Sajid Javed, Jorge Dias, Mohammed Bennamoun, Naoufel WerghiList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.19820Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.19820Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.19820Direct OA link when available
- Concepts
-
Scarcity, Histopathology, Data science, Computer science, Economics, Medicine, Pathology, MicroeconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404313480 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.19820 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.19820 |
| ids.openalex | https://openalex.org/W4404313480 |
| fwci | |
| type | preprint |
| title | Advancing Histopathology with Deep Learning Under Data Scarcity: A Decade in Review |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9678999781608582 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T12874 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9663000106811523 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Imaging for Blood Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C109747225 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7897986769676208 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q815758 |
| concepts[0].display_name | Scarcity |
| concepts[1].id | https://openalex.org/C544855455 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4113704264163971 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1070952 |
| concepts[1].display_name | Histopathology |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.372626930475235 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.29482150077819824 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C162324750 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2237081229686737 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[4].display_name | Economics |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.16777744889259338 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C142724271 |
| concepts[6].level | 1 |
| concepts[6].score | 0.11872586607933044 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[6].display_name | Pathology |
| concepts[7].id | https://openalex.org/C175444787 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[7].display_name | Microeconomics |
| keywords[0].id | https://openalex.org/keywords/scarcity |
| keywords[0].score | 0.7897986769676208 |
| keywords[0].display_name | Scarcity |
| keywords[1].id | https://openalex.org/keywords/histopathology |
| keywords[1].score | 0.4113704264163971 |
| keywords[1].display_name | Histopathology |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.372626930475235 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.29482150077819824 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/economics |
| keywords[4].score | 0.2237081229686737 |
| keywords[4].display_name | Economics |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.16777744889259338 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/pathology |
| keywords[6].score | 0.11872586607933044 |
| keywords[6].display_name | Pathology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.19820 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.19820 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.19820 |
| locations[1].id | doi:10.48550/arxiv.2410.19820 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.19820 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5006741258 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8297-5834 |
| authorships[0].author.display_name | Ahmad Obeid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Obeid, Ahmad |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007918012 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8154-7195 |
| authorships[1].author.display_name | Said Boumaraf |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Boumaraf, Said |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5026855523 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2961-6098 |
| authorships[2].author.display_name | Anabia Sohail |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sohail, Anabia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5011636952 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5896-8677 |
| authorships[3].author.display_name | Taimur Hassan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hassan, Taimur |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5071515463 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0036-2875 |
| authorships[4].author.display_name | Sajid Javed |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Javed, Sajid |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5012053457 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2725-8867 |
| authorships[5].author.display_name | Jorge Dias |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dias, Jorge |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5009750573 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6603-3257 |
| authorships[6].author.display_name | Mohammed Bennamoun |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bennamoun, Mohammed |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5059512412 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5542-448X |
| authorships[7].author.display_name | Naoufel Werghi |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Werghi, Naoufel |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.19820 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Advancing Histopathology with Deep Learning Under Data Scarcity: A Decade in Review |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W3039419443, https://openalex.org/W4386772532, https://openalex.org/W1571141552, https://openalex.org/W4393212117, https://openalex.org/W4391636338, https://openalex.org/W2115661411, https://openalex.org/W2399391471, https://openalex.org/W2400254106, https://openalex.org/W2970729894, https://openalex.org/W4381996710 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.19820 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.19820 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.19820 |
| primary_location.id | pmh:oai:arXiv.org:2410.19820 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.19820 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.19820 |
| publication_date | 2024-10-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 51, 129, 139 |
| abstract_inverted_index.In | 82, 124 |
| abstract_inverted_index.We | 152 |
| abstract_inverted_index.by | 10, 145 |
| abstract_inverted_index.in | 5, 47, 136, 177, 191 |
| abstract_inverted_index.is | 54 |
| abstract_inverted_index.of | 18, 43, 64, 132 |
| abstract_inverted_index.on | 34, 96, 141 |
| abstract_inverted_index.to | 27, 62, 75 |
| abstract_inverted_index.up | 61 |
| abstract_inverted_index.we | 127, 174 |
| abstract_inverted_index.and | 39, 45, 79, 98, 121, 155, 166, 171, 180 |
| abstract_inverted_index.for | 114, 188 |
| abstract_inverted_index.may | 59 |
| abstract_inverted_index.the | 15, 41, 104, 142, 149, 186 |
| abstract_inverted_index.This | 13 |
| abstract_inverted_index.bias | 46 |
| abstract_inverted_index.data | 91, 120, 146 |
| abstract_inverted_index.deep | 11, 19, 56, 116, 133 |
| abstract_inverted_index.gaps | 176 |
| abstract_inverted_index.over | 148 |
| abstract_inverted_index.past | 150 |
| abstract_inverted_index.such | 88 |
| abstract_inverted_index.that | 55 |
| abstract_inverted_index.this | 108, 125, 192 |
| abstract_inverted_index.vast | 72 |
| abstract_inverted_index.with | 118, 138 |
| abstract_inverted_index.art's | 105 |
| abstract_inverted_index.focus | 140 |
| abstract_inverted_index.noise | 80 |
| abstract_inverted_index.posed | 144 |
| abstract_inverted_index.risks | 42 |
| abstract_inverted_index.their | 67, 160, 168 |
| abstract_inverted_index.tools | 21 |
| abstract_inverted_index.using | 163 |
| abstract_inverted_index.which | 102 |
| abstract_inverted_index.would | 70 |
| abstract_inverted_index.years | 1 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.costs, | 101 |
| abstract_inverted_index.field. | 193 |
| abstract_inverted_index.fueled | 9 |
| abstract_inverted_index.future | 189 |
| abstract_inverted_index.higher | 100 |
| abstract_inverted_index.incurs | 99 |
| abstract_inverted_index.models | 58 |
| abstract_inverted_index.paper, | 126 |
| abstract_inverted_index.places | 93 |
| abstract_inverted_index.reach, | 23 |
| abstract_inverted_index.review | 131 |
| abstract_inverted_index.second | 32 |
| abstract_inverted_index.tasks, | 38 |
| abstract_inverted_index.within | 22 |
| abstract_inverted_index.achieve | 76 |
| abstract_inverted_index.address | 175 |
| abstract_inverted_index.brought | 14 |
| abstract_inverted_index.compare | 156 |
| abstract_inverted_index.complex | 37 |
| abstract_inverted_index.contain | 60 |
| abstract_inverted_index.decade. | 151 |
| abstract_inverted_index.demands | 95 |
| abstract_inverted_index.devised | 111 |
| abstract_inverted_index.hinders | 103 |
| abstract_inverted_index.labeled | 73, 90 |
| abstract_inverted_index.largely | 8 |
| abstract_inverted_index.limited | 119 |
| abstract_inverted_index.medical | 83 |
| abstract_inverted_index.opinion | 33 |
| abstract_inverted_index.present | 128 |
| abstract_inverted_index.require | 71 |
| abstract_inverted_index.reviews | 179 |
| abstract_inverted_index.tables, | 165 |
| abstract_inverted_index.various | 112, 157 |
| abstract_inverted_index.However, | 50 |
| abstract_inverted_index.adoption | 17 |
| abstract_inverted_index.amassing | 87 |
| abstract_inverted_index.benefits | 26 |
| abstract_inverted_index.billions | 63 |
| abstract_inverted_index.clinical | 16, 48 |
| abstract_inverted_index.datasets | 74 |
| abstract_inverted_index.distinct | 161 |
| abstract_inverted_index.evaluate | 159 |
| abstract_inverted_index.existing | 178 |
| abstract_inverted_index.identify | 181 |
| abstract_inverted_index.imaging, | 84 |
| abstract_inverted_index.learning | 57, 117, 134 |
| abstract_inverted_index.offering | 29 |
| abstract_inverted_index.progress | 4 |
| abstract_inverted_index.reliable | 77 |
| abstract_inverted_index.research | 183 |
| abstract_inverted_index.scarcity | 147 |
| abstract_inverted_index.training | 68 |
| abstract_inverted_index.valuable | 31 |
| abstract_inverted_index.challenge | 53 |
| abstract_inverted_index.extensive | 89 |
| abstract_inverted_index.highlight | 167 |
| abstract_inverted_index.learning. | 12 |
| abstract_inverted_index.potential | 187 |
| abstract_inverted_index.progress. | 106 |
| abstract_inverted_index.promising | 24 |
| abstract_inverted_index.witnessed | 2 |
| abstract_inverted_index.Addressing | 107 |
| abstract_inverted_index.additional | 94 |
| abstract_inverted_index.advantages | 170 |
| abstract_inverted_index.annotation | 122 |
| abstract_inverted_index.categorize | 154 |
| abstract_inverted_index.challenge, | 109 |
| abstract_inverted_index.challenges | 143 |
| abstract_inverted_index.clinicians | 97 |
| abstract_inverted_index.decisions. | 49 |
| abstract_inverted_index.diagnoses, | 35 |
| abstract_inverted_index.leveraging | 115 |
| abstract_inverted_index.mitigating | 40 |
| abstract_inverted_index.remarkable | 3 |
| abstract_inverted_index.respective | 169 |
| abstract_inverted_index.strategies | 113 |
| abstract_inverted_index.well-known | 52 |
| abstract_inverted_index.approaches, | 158 |
| abstract_inverted_index.collections | 92 |
| abstract_inverted_index.effectively | 69 |
| abstract_inverted_index.healthcare, | 28 |
| abstract_inverted_index.parameters; | 65 |
| abstract_inverted_index.researchers | 110 |
| abstract_inverted_index.resilience. | 81 |
| abstract_inverted_index.significant | 25 |
| abstract_inverted_index.supervising | 66 |
| abstract_inverted_index.advancements | 190 |
| abstract_inverted_index.applications | 135 |
| abstract_inverted_index.benchmarking | 164 |
| abstract_inverted_index.limitations. | 172 |
| abstract_inverted_index.particularly | 85 |
| abstract_inverted_index.streamlining | 36 |
| abstract_inverted_index.underscoring | 185 |
| abstract_inverted_index.Additionally, | 173 |
| abstract_inverted_index.availability. | 123 |
| abstract_inverted_index.comprehensive | 130 |
| abstract_inverted_index.computational | 6 |
| abstract_inverted_index.contributions | 162 |
| abstract_inverted_index.inconsistency | 44 |
| abstract_inverted_index.underexplored | 182 |
| abstract_inverted_index.generalization | 78 |
| abstract_inverted_index.learning-based | 20 |
| abstract_inverted_index.opportunities, | 184 |
| abstract_inverted_index.systematically | 153 |
| abstract_inverted_index.histopathology, | 7, 86, 137 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |