Advancing Riverine–Lacustrine Ecosystem Vulnerability Prediction Using Multi-Sensor Satellite Data, Attention-Based Deep Learning, and Evolutionary Metaheuristics Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/w17243456
Riverine–lacustrine ecosystems in river–lake continua face increasing threats, yet conventional vulnerability maps often overlook local degradation drivers. This study presents an advanced satellite-based mapping framework using Deep Attention Networks (DANets) for accurate, interpretable vulnerability assessment. In the Ebinur Lake Basin, a representative dryland river system, we first built a satellite-derived evidence map of ecosystem stress aligned with the IPCC’s vulnerability definition. We then optimized DANets via two nature-inspired algorithms: Genetic Algorithm (GA) and Grey Wolf Optimizer (GWO). The optimized models demonstrated strong predictive capacity, explaining a large share of vulnerability variance (R2 = 0.78 for GA-DANets; R2 = 0.76 for GWO-DANets). For high/low-vulnerability discrimination, GWO-DANets was most effective and stable, with a mean AUC = 0.960 ± 0.044. Factor importance analysis identified soil organic carbon (SOC; 0.29), precipitation seasonality (0.24), and aridity (0.22) as dominant drivers. Two distinct pathways emerged: chronic degradation in arid plains, driven by low SOC and poor water retention; and acute hydrological stress in wetlands, where carbon-rich soils are sensitive to drying. This insight shifts management from uniform to targeted approaches: soil restoration in plains and water-flow protection in wetlands. By integrating metaheuristically optimized deep learning with multi-sensor satellite data, the framework offers a scalable decision-support tool for safeguarding water-dependent ecosystems. The study confirms that vulnerability in the basin follows two predictable, process-based trajectories, which can be directly linked to measurable soil and hydrological conditions. These clear patterns allow managers to prioritize interventions where they will have the greatest effect under ongoing climate pressure.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/w17243456
- https://www.mdpi.com/2073-4441/17/24/3456/pdf?version=1764939821
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4417040048
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417040048Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/w17243456Digital Object Identifier
- Title
-
Advancing Riverine–Lacustrine Ecosystem Vulnerability Prediction Using Multi-Sensor Satellite Data, Attention-Based Deep Learning, and Evolutionary MetaheuristicsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-05Full publication date if available
- Authors
-
Zheng Zhou, Xu Shi, Fuchu Zhang, Xinlin HeList of authors in order
- Landing page
-
https://doi.org/10.3390/w17243456Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-4441/17/24/3456/pdf?version=1764939821Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-4441/17/24/3456/pdf?version=1764939821Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417040048 |
|---|---|
| doi | https://doi.org/10.3390/w17243456 |
| ids.doi | https://doi.org/10.3390/w17243456 |
| ids.openalex | https://openalex.org/W4417040048 |
| fwci | |
| type | article |
| title | Advancing Riverine–Lacustrine Ecosystem Vulnerability Prediction Using Multi-Sensor Satellite Data, Attention-Based Deep Learning, and Evolutionary Metaheuristics |
| biblio.issue | 24 |
| biblio.volume | 17 |
| biblio.last_page | 3456 |
| biblio.first_page | 3456 |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| language | en |
| locations[0].id | doi:10.3390/w17243456 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S134216166 |
| locations[0].source.issn | 2073-4441 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-4441 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Water |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-4441/17/24/3456/pdf?version=1764939821 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Water |
| locations[0].landing_page_url | https://doi.org/10.3390/w17243456 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101519115 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2585-0418 |
| authorships[0].author.display_name | Zheng Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102208913 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210115590 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Water Resources of Xinjiang Uygur Autonomous Region, Urumqi 830052, China |
| authorships[0].institutions[0].id | https://openalex.org/I102208913 |
| authorships[0].institutions[0].ror | https://ror.org/04x0kvm78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102208913 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shihezi University |
| authorships[0].institutions[1].id | https://openalex.org/I4210115590 |
| authorships[0].institutions[1].ror | https://ror.org/02f6v4t81 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210115590 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Xinjiang Institute of Water Resources and Hydropower Research |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhou Zheng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China, Department of Water Resources of Xinjiang Uygur Autonomous Region, Urumqi 830052, China |
| authorships[1].author.id | https://openalex.org/A5072928191 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5638-6297 |
| authorships[1].author.display_name | Xu Shi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210153568 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Culinary and Catering Management, Xinjiang Vocational University, Urumqi 830013, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I102208913 |
| authorships[1].affiliations[1].raw_affiliation_string | College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China |
| authorships[1].institutions[0].id | https://openalex.org/I102208913 |
| authorships[1].institutions[0].ror | https://ror.org/04x0kvm78 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I102208913 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shihezi University |
| authorships[1].institutions[1].id | https://openalex.org/I4210153568 |
| authorships[1].institutions[1].ror | https://ror.org/05kmekg24 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210153568 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Urumqi Vocational University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xuexia Shi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Culinary and Catering Management, Xinjiang Vocational University, Urumqi 830013, China, College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China |
| authorships[2].author.id | https://openalex.org/A5041363712 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Fuchu Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I102208913 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China |
| authorships[2].institutions[0].id | https://openalex.org/I102208913 |
| authorships[2].institutions[0].ror | https://ror.org/04x0kvm78 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I102208913 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shihezi University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fuchu Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China |
| authorships[3].author.id | https://openalex.org/A5066820094 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4771-5682 |
| authorships[3].author.display_name | Xinlin He |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I102208913 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China |
| authorships[3].institutions[0].id | https://openalex.org/I102208913 |
| authorships[3].institutions[0].ror | https://ror.org/04x0kvm78 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I102208913 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shihezi University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xinlin He |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-4441/17/24/3456/pdf?version=1764939821 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | Advancing Riverine–Lacustrine Ecosystem Vulnerability Prediction Using Multi-Sensor Satellite Data, Attention-Based Deep Learning, and Evolutionary Metaheuristics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-06T23:10:59.065948 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/w17243456 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S134216166 |
| best_oa_location.source.issn | 2073-4441 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-4441 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Water |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-4441/17/24/3456/pdf?version=1764939821 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Water |
| best_oa_location.landing_page_url | https://doi.org/10.3390/w17243456 |
| primary_location.id | doi:10.3390/w17243456 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S134216166 |
| primary_location.source.issn | 2073-4441 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-4441 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Water |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-4441/17/24/3456/pdf?version=1764939821 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Water |
| primary_location.landing_page_url | https://doi.org/10.3390/w17243456 |
| publication_date | 2025-12-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 92, 97, 114 |
| abstract_inverted_index.a | 40, 48, 85, 111, 197 |
| abstract_inverted_index.By | 184 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.R2 | 96 |
| abstract_inverted_index.We | 61 |
| abstract_inverted_index.an | 20 |
| abstract_inverted_index.as | 133 |
| abstract_inverted_index.be | 220 |
| abstract_inverted_index.by | 146 |
| abstract_inverted_index.in | 2, 142, 157, 177, 182, 210 |
| abstract_inverted_index.of | 52, 88 |
| abstract_inverted_index.to | 164, 172, 223, 234 |
| abstract_inverted_index.we | 45 |
| abstract_inverted_index.± | 116 |
| abstract_inverted_index.(R2 | 91 |
| abstract_inverted_index.AUC | 113 |
| abstract_inverted_index.For | 101 |
| abstract_inverted_index.SOC | 148 |
| abstract_inverted_index.The | 77, 205 |
| abstract_inverted_index.Two | 136 |
| abstract_inverted_index.and | 72, 108, 130, 149, 153, 179, 226 |
| abstract_inverted_index.are | 162 |
| abstract_inverted_index.can | 219 |
| abstract_inverted_index.for | 30, 94, 99, 201 |
| abstract_inverted_index.low | 147 |
| abstract_inverted_index.map | 51 |
| abstract_inverted_index.the | 36, 57, 194, 211, 241 |
| abstract_inverted_index.two | 66, 214 |
| abstract_inverted_index.via | 65 |
| abstract_inverted_index.was | 105 |
| abstract_inverted_index.yet | 8 |
| abstract_inverted_index.(GA) | 71 |
| abstract_inverted_index.0.76 | 98 |
| abstract_inverted_index.0.78 | 93 |
| abstract_inverted_index.Deep | 26 |
| abstract_inverted_index.Grey | 73 |
| abstract_inverted_index.Lake | 38 |
| abstract_inverted_index.This | 17, 166 |
| abstract_inverted_index.Wolf | 74 |
| abstract_inverted_index.arid | 143 |
| abstract_inverted_index.deep | 188 |
| abstract_inverted_index.face | 5 |
| abstract_inverted_index.from | 170 |
| abstract_inverted_index.have | 240 |
| abstract_inverted_index.maps | 11 |
| abstract_inverted_index.mean | 112 |
| abstract_inverted_index.most | 106 |
| abstract_inverted_index.poor | 150 |
| abstract_inverted_index.soil | 122, 175, 225 |
| abstract_inverted_index.that | 208 |
| abstract_inverted_index.then | 62 |
| abstract_inverted_index.they | 238 |
| abstract_inverted_index.tool | 200 |
| abstract_inverted_index.will | 239 |
| abstract_inverted_index.with | 56, 110, 190 |
| abstract_inverted_index.(SOC; | 125 |
| abstract_inverted_index.0.960 | 115 |
| abstract_inverted_index.These | 229 |
| abstract_inverted_index.acute | 154 |
| abstract_inverted_index.allow | 232 |
| abstract_inverted_index.basin | 212 |
| abstract_inverted_index.built | 47 |
| abstract_inverted_index.clear | 230 |
| abstract_inverted_index.data, | 193 |
| abstract_inverted_index.first | 46 |
| abstract_inverted_index.large | 86 |
| abstract_inverted_index.local | 14 |
| abstract_inverted_index.often | 12 |
| abstract_inverted_index.river | 43 |
| abstract_inverted_index.share | 87 |
| abstract_inverted_index.soils | 161 |
| abstract_inverted_index.study | 18, 206 |
| abstract_inverted_index.under | 244 |
| abstract_inverted_index.using | 25 |
| abstract_inverted_index.water | 151 |
| abstract_inverted_index.where | 159, 237 |
| abstract_inverted_index.which | 218 |
| abstract_inverted_index.(0.22) | 132 |
| abstract_inverted_index.(GWO). | 76 |
| abstract_inverted_index.0.044. | 117 |
| abstract_inverted_index.0.29), | 126 |
| abstract_inverted_index.Basin, | 39 |
| abstract_inverted_index.DANets | 64 |
| abstract_inverted_index.Ebinur | 37 |
| abstract_inverted_index.Factor | 118 |
| abstract_inverted_index.carbon | 124 |
| abstract_inverted_index.driven | 145 |
| abstract_inverted_index.effect | 243 |
| abstract_inverted_index.linked | 222 |
| abstract_inverted_index.models | 79 |
| abstract_inverted_index.offers | 196 |
| abstract_inverted_index.plains | 178 |
| abstract_inverted_index.shifts | 168 |
| abstract_inverted_index.stress | 54, 156 |
| abstract_inverted_index.strong | 81 |
| abstract_inverted_index.(0.24), | 129 |
| abstract_inverted_index.Genetic | 69 |
| abstract_inverted_index.aligned | 55 |
| abstract_inverted_index.aridity | 131 |
| abstract_inverted_index.chronic | 140 |
| abstract_inverted_index.climate | 246 |
| abstract_inverted_index.drying. | 165 |
| abstract_inverted_index.dryland | 42 |
| abstract_inverted_index.follows | 213 |
| abstract_inverted_index.insight | 167 |
| abstract_inverted_index.mapping | 23 |
| abstract_inverted_index.ongoing | 245 |
| abstract_inverted_index.organic | 123 |
| abstract_inverted_index.plains, | 144 |
| abstract_inverted_index.stable, | 109 |
| abstract_inverted_index.system, | 44 |
| abstract_inverted_index.uniform | 171 |
| abstract_inverted_index.(DANets) | 29 |
| abstract_inverted_index.IPCC’s | 58 |
| abstract_inverted_index.Networks | 28 |
| abstract_inverted_index.advanced | 21 |
| abstract_inverted_index.analysis | 120 |
| abstract_inverted_index.confirms | 207 |
| abstract_inverted_index.continua | 4 |
| abstract_inverted_index.directly | 221 |
| abstract_inverted_index.distinct | 137 |
| abstract_inverted_index.dominant | 134 |
| abstract_inverted_index.drivers. | 16, 135 |
| abstract_inverted_index.emerged: | 139 |
| abstract_inverted_index.evidence | 50 |
| abstract_inverted_index.greatest | 242 |
| abstract_inverted_index.learning | 189 |
| abstract_inverted_index.managers | 233 |
| abstract_inverted_index.overlook | 13 |
| abstract_inverted_index.pathways | 138 |
| abstract_inverted_index.patterns | 231 |
| abstract_inverted_index.presents | 19 |
| abstract_inverted_index.scalable | 198 |
| abstract_inverted_index.targeted | 173 |
| abstract_inverted_index.threats, | 7 |
| abstract_inverted_index.variance | 90 |
| abstract_inverted_index.Algorithm | 70 |
| abstract_inverted_index.Attention | 27 |
| abstract_inverted_index.Optimizer | 75 |
| abstract_inverted_index.accurate, | 31 |
| abstract_inverted_index.capacity, | 83 |
| abstract_inverted_index.ecosystem | 53 |
| abstract_inverted_index.effective | 107 |
| abstract_inverted_index.framework | 24, 195 |
| abstract_inverted_index.optimized | 63, 78, 187 |
| abstract_inverted_index.pressure. | 247 |
| abstract_inverted_index.satellite | 192 |
| abstract_inverted_index.sensitive | 163 |
| abstract_inverted_index.wetlands, | 158 |
| abstract_inverted_index.wetlands. | 183 |
| abstract_inverted_index.GA-DANets; | 95 |
| abstract_inverted_index.GWO-DANets | 104 |
| abstract_inverted_index.ecosystems | 1 |
| abstract_inverted_index.explaining | 84 |
| abstract_inverted_index.identified | 121 |
| abstract_inverted_index.importance | 119 |
| abstract_inverted_index.increasing | 6 |
| abstract_inverted_index.management | 169 |
| abstract_inverted_index.measurable | 224 |
| abstract_inverted_index.predictive | 82 |
| abstract_inverted_index.prioritize | 235 |
| abstract_inverted_index.protection | 181 |
| abstract_inverted_index.retention; | 152 |
| abstract_inverted_index.water-flow | 180 |
| abstract_inverted_index.algorithms: | 68 |
| abstract_inverted_index.approaches: | 174 |
| abstract_inverted_index.assessment. | 34 |
| abstract_inverted_index.carbon-rich | 160 |
| abstract_inverted_index.conditions. | 228 |
| abstract_inverted_index.definition. | 60 |
| abstract_inverted_index.degradation | 15, 141 |
| abstract_inverted_index.ecosystems. | 204 |
| abstract_inverted_index.integrating | 185 |
| abstract_inverted_index.restoration | 176 |
| abstract_inverted_index.seasonality | 128 |
| abstract_inverted_index.GWO-DANets). | 100 |
| abstract_inverted_index.conventional | 9 |
| abstract_inverted_index.demonstrated | 80 |
| abstract_inverted_index.hydrological | 155, 227 |
| abstract_inverted_index.multi-sensor | 191 |
| abstract_inverted_index.predictable, | 215 |
| abstract_inverted_index.river–lake | 3 |
| abstract_inverted_index.safeguarding | 202 |
| abstract_inverted_index.interpretable | 32 |
| abstract_inverted_index.interventions | 236 |
| abstract_inverted_index.precipitation | 127 |
| abstract_inverted_index.process-based | 216 |
| abstract_inverted_index.trajectories, | 217 |
| abstract_inverted_index.vulnerability | 10, 33, 59, 89, 209 |
| abstract_inverted_index.representative | 41 |
| abstract_inverted_index.discrimination, | 103 |
| abstract_inverted_index.nature-inspired | 67 |
| abstract_inverted_index.satellite-based | 22 |
| abstract_inverted_index.water-dependent | 203 |
| abstract_inverted_index.decision-support | 199 |
| abstract_inverted_index.metaheuristically | 186 |
| abstract_inverted_index.satellite-derived | 49 |
| abstract_inverted_index.Riverine–lacustrine | 0 |
| abstract_inverted_index.high/low-vulnerability | 102 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |