Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3389/frai.2024.1398126
In the contemporary realm of industry, the imperative for influential and steadfast systems to detect anomalies is critically recognized. Our study introduces a cutting-edge approach utilizing a deep learning model of the Long-Short Term Memory variety, meticulously crafted for real-time surveillance and mitigation of irregularities within industrial settings. Through the careful amalgamation of data acquisition and analytic processing informed by our model, we have forged a system adept at pinpointing anomalies with high precision, capable of autonomously proposing or implementing remedial measures. The findings demonstrate a marked enhancement in the efficacy of operations, with the model’s accuracy surging to 95%, recall at 90%, and an F1 score reaching 92.5%. Moreover, the system has favorably impacted the environment, evidenced by a 25% decline in CO2 emissions and a 20% reduction in water usage. Our model surpasses preceding systems, showcasing significant gains in speed and precision. This research corroborates the capabilities of deep learning within the industrial sector. It underscores the role of automated systems in fostering more sustainable and efficient operations in the contemporary industrial landscape.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/frai.2024.1398126
- OA Status
- gold
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404120161
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404120161Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/frai.2024.1398126Digital Object Identifier
- Title
-
Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-06Full publication date if available
- Authors
-
William Villegas-Ch, Jaime Govea, Walter Gaibor-Naranjo, Santiago Sánchez-ViteriList of authors in order
- Landing page
-
https://doi.org/10.3389/frai.2024.1398126Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/frai.2024.1398126Direct OA link when available
- Concepts
-
Realm, Variety (cybernetics), Deep learning, Computer science, Artificial intelligence, Remedial education, Enhanced Data Rates for GSM Evolution, Industrial engineering, Data science, Machine learning, Engineering, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404120161 |
|---|---|
| doi | https://doi.org/10.3389/frai.2024.1398126 |
| ids.doi | https://doi.org/10.3389/frai.2024.1398126 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39568661 |
| ids.openalex | https://openalex.org/W4404120161 |
| fwci | 0.0 |
| type | article |
| title | Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 1398126 |
| biblio.first_page | 1398126 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9902999997138977 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9419000148773193 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T12120 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9398000240325928 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Air Quality Monitoring and Forecasting |
| is_xpac | False |
| apc_list.value | 1150 |
| apc_list.currency | USD |
| apc_list.value_usd | 1150 |
| apc_paid.value | 1150 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1150 |
| concepts[0].id | https://openalex.org/C2778757428 |
| concepts[0].level | 2 |
| concepts[0].score | 0.69461590051651 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1250464 |
| concepts[0].display_name | Realm |
| concepts[1].id | https://openalex.org/C136197465 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6476604342460632 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[1].display_name | Variety (cybernetics) |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6463819742202759 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5483863353729248 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49874448776245117 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C100207952 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48103123903274536 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7311597 |
| concepts[5].display_name | Remedial education |
| concepts[6].id | https://openalex.org/C162307627 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4355791211128235 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[6].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[7].id | https://openalex.org/C13736549 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3809084892272949 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4489420 |
| concepts[7].display_name | Industrial engineering |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.356572687625885 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3499802052974701 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3010059595108032 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| concepts[12].id | https://openalex.org/C17744445 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[12].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/realm |
| keywords[0].score | 0.69461590051651 |
| keywords[0].display_name | Realm |
| keywords[1].id | https://openalex.org/keywords/variety |
| keywords[1].score | 0.6476604342460632 |
| keywords[1].display_name | Variety (cybernetics) |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6463819742202759 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5483863353729248 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.49874448776245117 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/remedial-education |
| keywords[5].score | 0.48103123903274536 |
| keywords[5].display_name | Remedial education |
| keywords[6].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[6].score | 0.4355791211128235 |
| keywords[6].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[7].id | https://openalex.org/keywords/industrial-engineering |
| keywords[7].score | 0.3809084892272949 |
| keywords[7].display_name | Industrial engineering |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.356572687625885 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3499802052974701 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.3010059595108032 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3389/frai.2024.1398126 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210197006 |
| locations[0].source.issn | 2624-8212 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-8212 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.3389/frai.2024.1398126 |
| locations[1].id | pmid:39568661 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in artificial intelligence |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39568661 |
| locations[2].id | pmh:oai:doaj.org/article:7c7c2c6dc93b4f32806e9246cc964e99 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Artificial Intelligence, Vol 7 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/7c7c2c6dc93b4f32806e9246cc964e99 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11576463 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Artif Intell |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11576463 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5033572800 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5421-7710 |
| authorships[0].author.display_name | William Villegas-Ch |
| authorships[0].countries | EC |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210102282 |
| authorships[0].affiliations[0].raw_affiliation_string | Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador |
| authorships[0].institutions[0].id | https://openalex.org/I4210102282 |
| authorships[0].institutions[0].ror | https://ror.org/0198j4566 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210102282 |
| authorships[0].institutions[0].country_code | EC |
| authorships[0].institutions[0].display_name | Universidad de Las Américas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | William Villegas-Ch |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador |
| authorships[1].author.id | https://openalex.org/A5002559820 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-5706-8422 |
| authorships[1].author.display_name | Jaime Govea |
| authorships[1].countries | EC |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210102282 |
| authorships[1].affiliations[0].raw_affiliation_string | Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador |
| authorships[1].institutions[0].id | https://openalex.org/I4210102282 |
| authorships[1].institutions[0].ror | https://ror.org/0198j4566 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210102282 |
| authorships[1].institutions[0].country_code | EC |
| authorships[1].institutions[0].display_name | Universidad de Las Américas |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jaime Govea |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador |
| authorships[2].author.id | https://openalex.org/A5032705141 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Walter Gaibor-Naranjo |
| authorships[2].countries | EC |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3132940433 |
| authorships[2].affiliations[0].raw_affiliation_string | Carrera de Ciencias de la Computación, Universidad Politécnica Salesiana, Quito, Ecuador |
| authorships[2].institutions[0].id | https://openalex.org/I3132940433 |
| authorships[2].institutions[0].ror | https://ror.org/00f11af73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3132940433 |
| authorships[2].institutions[0].country_code | EC |
| authorships[2].institutions[0].display_name | Politecnica Salesiana University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Walter Gaibor-Naranjo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Carrera de Ciencias de la Computación, Universidad Politécnica Salesiana, Quito, Ecuador |
| authorships[3].author.id | https://openalex.org/A5045314910 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Santiago Sánchez-Viteri |
| authorships[3].countries | EC |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210140740 |
| authorships[3].affiliations[0].raw_affiliation_string | Departamento de Sistemas, Universidad Internacional del Ecuador, Quito, Ecuador |
| authorships[3].institutions[0].id | https://openalex.org/I4210140740 |
| authorships[3].institutions[0].ror | https://ror.org/04xf2rc74 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210140740 |
| authorships[3].institutions[0].country_code | EC |
| authorships[3].institutions[0].display_name | Universidad Internacional del Ecuador |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Santiago Sanchez-Viteri |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Departamento de Sistemas, Universidad Internacional del Ecuador, Quito, Ecuador |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/frai.2024.1398126 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9902999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2359053655, https://openalex.org/W2387777532, https://openalex.org/W2382709029, https://openalex.org/W2389147080, https://openalex.org/W2377883125, https://openalex.org/W2362479786, https://openalex.org/W2392455911, https://openalex.org/W2374248756, https://openalex.org/W2375492428, https://openalex.org/W2350419982 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/frai.2024.1398126 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210197006 |
| best_oa_location.source.issn | 2624-8212 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-8212 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.3389/frai.2024.1398126 |
| primary_location.id | doi:10.3389/frai.2024.1398126 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210197006 |
| primary_location.source.issn | 2624-8212 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-8212 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.3389/frai.2024.1398126 |
| publication_date | 2024-11-06 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4240521948, https://openalex.org/W4390291290, https://openalex.org/W4392114314, https://openalex.org/W3200617211, https://openalex.org/W4206490031, https://openalex.org/W4224264356, https://openalex.org/W3196436874, https://openalex.org/W4375866544, https://openalex.org/W4206578128, https://openalex.org/W4295308441, https://openalex.org/W3129347641, https://openalex.org/W4223986613, https://openalex.org/W2991970757, https://openalex.org/W4376255900, https://openalex.org/W4312140053, https://openalex.org/W1969873373, https://openalex.org/W3036457721, https://openalex.org/W4386692211, https://openalex.org/W4389506879, https://openalex.org/W3163273607, https://openalex.org/W4309688700, https://openalex.org/W3202707141, https://openalex.org/W4321073922, https://openalex.org/W2920725526, https://openalex.org/W3092198360, https://openalex.org/W3214274531, https://openalex.org/W4311327334, https://openalex.org/W4377695449, https://openalex.org/W3001479960, https://openalex.org/W4387010613, https://openalex.org/W6848189551, https://openalex.org/W4390362897, https://openalex.org/W4319942579, https://openalex.org/W3161236966, https://openalex.org/W3131065411, https://openalex.org/W2501356530 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 22, 26, 65, 85, 119, 126 |
| abstract_inverted_index.F1 | 105 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.It | 156 |
| abstract_inverted_index.an | 104 |
| abstract_inverted_index.at | 68, 101 |
| abstract_inverted_index.by | 59, 118 |
| abstract_inverted_index.in | 88, 122, 129, 140, 163, 170 |
| abstract_inverted_index.is | 16 |
| abstract_inverted_index.of | 4, 30, 43, 52, 75, 91, 149, 160 |
| abstract_inverted_index.or | 78 |
| abstract_inverted_index.to | 13, 98 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.20% | 127 |
| abstract_inverted_index.25% | 120 |
| abstract_inverted_index.CO2 | 123 |
| abstract_inverted_index.Our | 19, 132 |
| abstract_inverted_index.The | 82 |
| abstract_inverted_index.and | 10, 41, 55, 103, 125, 142, 167 |
| abstract_inverted_index.for | 8, 38 |
| abstract_inverted_index.has | 112 |
| abstract_inverted_index.our | 60 |
| abstract_inverted_index.the | 1, 6, 31, 49, 89, 94, 110, 115, 147, 153, 158, 171 |
| abstract_inverted_index.90%, | 102 |
| abstract_inverted_index.95%, | 99 |
| abstract_inverted_index.Term | 33 |
| abstract_inverted_index.This | 144 |
| abstract_inverted_index.data | 53 |
| abstract_inverted_index.deep | 27, 150 |
| abstract_inverted_index.have | 63 |
| abstract_inverted_index.high | 72 |
| abstract_inverted_index.more | 165 |
| abstract_inverted_index.role | 159 |
| abstract_inverted_index.with | 71, 93 |
| abstract_inverted_index.adept | 67 |
| abstract_inverted_index.gains | 139 |
| abstract_inverted_index.model | 29, 133 |
| abstract_inverted_index.realm | 3 |
| abstract_inverted_index.score | 106 |
| abstract_inverted_index.speed | 141 |
| abstract_inverted_index.study | 20 |
| abstract_inverted_index.water | 130 |
| abstract_inverted_index.92.5%. | 108 |
| abstract_inverted_index.Memory | 34 |
| abstract_inverted_index.detect | 14 |
| abstract_inverted_index.forged | 64 |
| abstract_inverted_index.marked | 86 |
| abstract_inverted_index.model, | 61 |
| abstract_inverted_index.recall | 100 |
| abstract_inverted_index.system | 66, 111 |
| abstract_inverted_index.usage. | 131 |
| abstract_inverted_index.within | 45, 152 |
| abstract_inverted_index.Through | 48 |
| abstract_inverted_index.capable | 74 |
| abstract_inverted_index.careful | 50 |
| abstract_inverted_index.crafted | 37 |
| abstract_inverted_index.decline | 121 |
| abstract_inverted_index.sector. | 155 |
| abstract_inverted_index.surging | 97 |
| abstract_inverted_index.systems | 12, 162 |
| abstract_inverted_index.accuracy | 96 |
| abstract_inverted_index.analytic | 56 |
| abstract_inverted_index.approach | 24 |
| abstract_inverted_index.efficacy | 90 |
| abstract_inverted_index.findings | 83 |
| abstract_inverted_index.impacted | 114 |
| abstract_inverted_index.informed | 58 |
| abstract_inverted_index.learning | 28, 151 |
| abstract_inverted_index.reaching | 107 |
| abstract_inverted_index.remedial | 80 |
| abstract_inverted_index.research | 145 |
| abstract_inverted_index.systems, | 136 |
| abstract_inverted_index.variety, | 35 |
| abstract_inverted_index.Moreover, | 109 |
| abstract_inverted_index.anomalies | 15, 70 |
| abstract_inverted_index.automated | 161 |
| abstract_inverted_index.efficient | 168 |
| abstract_inverted_index.emissions | 124 |
| abstract_inverted_index.evidenced | 117 |
| abstract_inverted_index.favorably | 113 |
| abstract_inverted_index.fostering | 164 |
| abstract_inverted_index.industry, | 5 |
| abstract_inverted_index.measures. | 81 |
| abstract_inverted_index.model’s | 95 |
| abstract_inverted_index.preceding | 135 |
| abstract_inverted_index.proposing | 77 |
| abstract_inverted_index.real-time | 39 |
| abstract_inverted_index.reduction | 128 |
| abstract_inverted_index.settings. | 47 |
| abstract_inverted_index.steadfast | 11 |
| abstract_inverted_index.surpasses | 134 |
| abstract_inverted_index.utilizing | 25 |
| abstract_inverted_index.Long-Short | 32 |
| abstract_inverted_index.critically | 17 |
| abstract_inverted_index.imperative | 7 |
| abstract_inverted_index.industrial | 46, 154, 173 |
| abstract_inverted_index.introduces | 21 |
| abstract_inverted_index.landscape. | 174 |
| abstract_inverted_index.mitigation | 42 |
| abstract_inverted_index.operations | 169 |
| abstract_inverted_index.precision, | 73 |
| abstract_inverted_index.precision. | 143 |
| abstract_inverted_index.processing | 57 |
| abstract_inverted_index.showcasing | 137 |
| abstract_inverted_index.acquisition | 54 |
| abstract_inverted_index.demonstrate | 84 |
| abstract_inverted_index.enhancement | 87 |
| abstract_inverted_index.influential | 9 |
| abstract_inverted_index.operations, | 92 |
| abstract_inverted_index.pinpointing | 69 |
| abstract_inverted_index.recognized. | 18 |
| abstract_inverted_index.significant | 138 |
| abstract_inverted_index.sustainable | 166 |
| abstract_inverted_index.underscores | 157 |
| abstract_inverted_index.amalgamation | 51 |
| abstract_inverted_index.autonomously | 76 |
| abstract_inverted_index.capabilities | 148 |
| abstract_inverted_index.contemporary | 2, 172 |
| abstract_inverted_index.corroborates | 146 |
| abstract_inverted_index.cutting-edge | 23 |
| abstract_inverted_index.environment, | 116 |
| abstract_inverted_index.implementing | 79 |
| abstract_inverted_index.meticulously | 36 |
| abstract_inverted_index.surveillance | 40 |
| abstract_inverted_index.irregularities | 44 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5033572800 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210102282 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.21723797 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |