Advancing Stem Volume Estimation Using Multi-Platform LiDAR and Taper Model Integration for Precision Forestry Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17050785
Stem volume is a critical factor in managing and evaluating forest resources. At present, stem volume is commonly estimated indirectly by constructing a taper model that utilizes sampling, diameter at breast height (DBH), and tree height. However, these estimates are constrained by errors arising from spatial and stand environment variations as well as uncertainties in height measurements. To address these issues, this study aimed to accurately estimate stem volume using light detection and ranging (LiDAR) technology, a key tool in modern precision forestry. LiDAR data were used to build comprehensive three-dimensional models of forests with multi-platform LiDAR systems. This approach allowed for precise measurements of tree heights and stem diameters at various heights, effectively mitigating the limitations of earlier measurement methods. Based on these data, a Kozak taper curve was developed at the individual tree level using LiDAR-derived tree height and diameter estimates. Integrating this curve with LiDAR data enabled a hybrid approach to estimating stem volume, facilitating the calculation of diameters at points not directly identifiable from LiDAR data alone. The proposed method was implemented and evaluated for two economically significant tree species in Korea: Pinus koraiensis and Larix kaempferi. The RMSE comparison between the taper curve-based approach and the hybrid volume estimation method showed that, for Pinus koraiensis, the RMSE was 0.11 m3 using the taper curve-based approach and 0.07 m3 for the hybrid method, while for Larix kaempferi, the RMSE was 0.13 m3 and 0.05 m3, respectively. The estimation error of the hybrid method was approximately half that of the taper curve-based approach. Consequently, the hybrid volume estimation method, which integrates LiDAR and the taper model, overcomes the limitations of conventional taper curve-based approaches and contributes to improving the accuracy of forest resource monitoring.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17050785
- https://www.mdpi.com/2072-4292/17/5/785/pdf?version=1740389143
- OA Status
- gold
- Cited By
- 3
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407909965
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407909965Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17050785Digital Object Identifier
- Title
-
Advancing Stem Volume Estimation Using Multi-Platform LiDAR and Taper Model Integration for Precision ForestryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-24Full publication date if available
- Authors
-
Yong Kyu Lee, Jung‐Soo LeeList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17050785Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/17/5/785/pdf?version=1740389143Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/17/5/785/pdf?version=1740389143Direct OA link when available
- Concepts
-
Lidar, Estimation, Volume (thermodynamics), Remote sensing, Forestry, Environmental science, Computer science, Geology, Geography, Systems engineering, Engineering, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407909965 |
|---|---|
| doi | https://doi.org/10.3390/rs17050785 |
| ids.doi | https://doi.org/10.3390/rs17050785 |
| ids.openalex | https://openalex.org/W4407909965 |
| fwci | 6.12430864 |
| type | article |
| title | Advancing Stem Volume Estimation Using Multi-Platform LiDAR and Taper Model Integration for Precision Forestry |
| awards[0].id | https://openalex.org/G2636774306 |
| awards[0].funder_id | https://openalex.org/F4320334881 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021359A00-2223-BD01 |
| awards[0].funder_display_name | Korea Forest Service |
| biblio.issue | 5 |
| biblio.volume | 17 |
| biblio.last_page | 785 |
| biblio.first_page | 785 |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T11880 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2309 |
| topics[1].subfield.display_name | Nature and Landscape Conservation |
| topics[1].display_name | Forest ecology and management |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| funders[0].id | https://openalex.org/F4320334881 |
| funders[0].ror | https://ror.org/05bjbww34 |
| funders[0].display_name | Korea Forest Service |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.65785813331604 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C96250715 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5231814980506897 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[1].display_name | Estimation |
| concepts[2].id | https://openalex.org/C20556612 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5088794231414795 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4469374 |
| concepts[2].display_name | Volume (thermodynamics) |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4680126905441284 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C97137747 |
| concepts[4].level | 1 |
| concepts[4].score | 0.41703566908836365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[4].display_name | Forestry |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3818463087081909 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.33336141705513 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.21778655052185059 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.19715523719787598 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C201995342 |
| concepts[9].level | 1 |
| concepts[9].score | 0.14034000039100647 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[9].display_name | Systems engineering |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12356233596801758 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.083118736743927 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.65785813331604 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/estimation |
| keywords[1].score | 0.5231814980506897 |
| keywords[1].display_name | Estimation |
| keywords[2].id | https://openalex.org/keywords/volume |
| keywords[2].score | 0.5088794231414795 |
| keywords[2].display_name | Volume (thermodynamics) |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.4680126905441284 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/forestry |
| keywords[4].score | 0.41703566908836365 |
| keywords[4].display_name | Forestry |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.3818463087081909 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.33336141705513 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.21778655052185059 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.19715523719787598 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/systems-engineering |
| keywords[9].score | 0.14034000039100647 |
| keywords[9].display_name | Systems engineering |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.12356233596801758 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.083118736743927 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/rs17050785 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/17/5/785/pdf?version=1740389143 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17050785 |
| locations[1].id | pmh:oai:doaj.org/article:8fd9b52366994adc9254313d845a13be |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 5, p 785 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/8fd9b52366994adc9254313d845a13be |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5055364087 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0741-0809 |
| authorships[0].author.display_name | Yong Kyu Lee |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165507594 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Forest Management, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I165507594 |
| authorships[0].institutions[0].ror | https://ror.org/01mh5ph17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165507594 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Kangwon National University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongkyu Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Forest Management, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5100644456 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1703-0332 |
| authorships[1].author.display_name | Jung‐Soo Lee |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165507594 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Forest Management, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I165507594 |
| authorships[1].institutions[0].ror | https://ror.org/01mh5ph17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165507594 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Kangwon National University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jungsoo Lee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Forest Management, Kangwon National University, Chuncheon 24341, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/17/5/785/pdf?version=1740389143 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Advancing Stem Volume Estimation Using Multi-Platform LiDAR and Taper Model Integration for Precision Forestry |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W4406302447, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W4319837668, https://openalex.org/W2351984678, https://openalex.org/W2140032575, https://openalex.org/W2011860471, https://openalex.org/W2012196540, https://openalex.org/W3011451421 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17050785 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/17/5/785/pdf?version=1740389143 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17050785 |
| primary_location.id | doi:10.3390/rs17050785 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/17/5/785/pdf?version=1740389143 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17050785 |
| publication_date | 2025-02-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2006184023, https://openalex.org/W2765587043, https://openalex.org/W2109631166, https://openalex.org/W6802820547, https://openalex.org/W6756378699, https://openalex.org/W3090158433, https://openalex.org/W2010023092, https://openalex.org/W6755557248, https://openalex.org/W2091114554, https://openalex.org/W2791737641, https://openalex.org/W6795719887, https://openalex.org/W1965612218, https://openalex.org/W2324491030, https://openalex.org/W2084946328, https://openalex.org/W4385202528, https://openalex.org/W4406666222, https://openalex.org/W2995134806, https://openalex.org/W3003509779, https://openalex.org/W3123634431, https://openalex.org/W4210478945, https://openalex.org/W4402099932, https://openalex.org/W37754739, https://openalex.org/W3153061876, https://openalex.org/W2586340278, https://openalex.org/W4391881724, https://openalex.org/W4200115598, https://openalex.org/W4387843963, https://openalex.org/W4406907484, https://openalex.org/W6755575998, https://openalex.org/W2540382471, https://openalex.org/W4399894838, https://openalex.org/W3152476504, https://openalex.org/W6798865509, https://openalex.org/W6766387569, https://openalex.org/W2057565116, https://openalex.org/W6720507867, https://openalex.org/W2794665001, https://openalex.org/W3002608488, https://openalex.org/W3158879625, https://openalex.org/W3200409078, https://openalex.org/W2153178980, https://openalex.org/W1965148599, https://openalex.org/W3160841979, https://openalex.org/W3128287553, https://openalex.org/W3120781156, https://openalex.org/W4293104845, https://openalex.org/W2811093923, https://openalex.org/W2586143207, https://openalex.org/W4308003751, https://openalex.org/W2901059292, https://openalex.org/W2123769680, https://openalex.org/W6754606744, https://openalex.org/W4286568685, https://openalex.org/W4224910060, https://openalex.org/W2521825780, https://openalex.org/W2068845501, https://openalex.org/W2895380980, https://openalex.org/W3119452456, https://openalex.org/W3024236969, https://openalex.org/W4311363866, https://openalex.org/W1974200960, https://openalex.org/W2002108021, https://openalex.org/W2027778035, https://openalex.org/W3177498709, https://openalex.org/W4402634347, https://openalex.org/W2895573404, https://openalex.org/W2965577372, https://openalex.org/W2898674868, https://openalex.org/W3164755523, https://openalex.org/W3184980523, https://openalex.org/W2890944695, https://openalex.org/W2472927750, https://openalex.org/W3208259726, https://openalex.org/W2901821898 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 3, 22, 76, 125, 150 |
| abstract_inverted_index.At | 12 |
| abstract_inverted_index.To | 57 |
| abstract_inverted_index.as | 50, 52 |
| abstract_inverted_index.at | 29, 110, 131, 162 |
| abstract_inverted_index.by | 20, 41 |
| abstract_inverted_index.in | 6, 54, 79, 184 |
| abstract_inverted_index.is | 2, 16 |
| abstract_inverted_index.m3 | 214, 222, 235 |
| abstract_inverted_index.of | 92, 104, 117, 160, 243, 251, 272, 283 |
| abstract_inverted_index.on | 122 |
| abstract_inverted_index.to | 64, 87, 153, 279 |
| abstract_inverted_index.The | 171, 191, 240 |
| abstract_inverted_index.and | 8, 33, 46, 72, 107, 140, 176, 188, 199, 220, 236, 265, 277 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.for | 101, 178, 207, 223, 228 |
| abstract_inverted_index.key | 77 |
| abstract_inverted_index.m3, | 238 |
| abstract_inverted_index.not | 164 |
| abstract_inverted_index.the | 115, 132, 158, 195, 200, 210, 216, 224, 231, 244, 252, 257, 266, 270, 281 |
| abstract_inverted_index.two | 179 |
| abstract_inverted_index.was | 129, 174, 212, 233, 247 |
| abstract_inverted_index.0.05 | 237 |
| abstract_inverted_index.0.07 | 221 |
| abstract_inverted_index.0.11 | 213 |
| abstract_inverted_index.0.13 | 234 |
| abstract_inverted_index.RMSE | 192, 211, 232 |
| abstract_inverted_index.Stem | 0 |
| abstract_inverted_index.This | 98 |
| abstract_inverted_index.data | 84, 148, 169 |
| abstract_inverted_index.from | 44, 167 |
| abstract_inverted_index.half | 249 |
| abstract_inverted_index.stem | 14, 67, 108, 155 |
| abstract_inverted_index.that | 25, 250 |
| abstract_inverted_index.this | 61, 144 |
| abstract_inverted_index.tool | 78 |
| abstract_inverted_index.tree | 34, 105, 134, 138, 182 |
| abstract_inverted_index.used | 86 |
| abstract_inverted_index.well | 51 |
| abstract_inverted_index.were | 85 |
| abstract_inverted_index.with | 94, 146 |
| abstract_inverted_index.Based | 121 |
| abstract_inverted_index.Kozak | 126 |
| abstract_inverted_index.Larix | 189, 229 |
| abstract_inverted_index.LiDAR | 83, 96, 147, 168, 264 |
| abstract_inverted_index.Pinus | 186, 208 |
| abstract_inverted_index.aimed | 63 |
| abstract_inverted_index.build | 88 |
| abstract_inverted_index.curve | 128, 145 |
| abstract_inverted_index.data, | 124 |
| abstract_inverted_index.error | 242 |
| abstract_inverted_index.level | 135 |
| abstract_inverted_index.light | 70 |
| abstract_inverted_index.model | 24 |
| abstract_inverted_index.stand | 47 |
| abstract_inverted_index.study | 62 |
| abstract_inverted_index.taper | 23, 127, 196, 217, 253, 267, 274 |
| abstract_inverted_index.that, | 206 |
| abstract_inverted_index.these | 37, 59, 123 |
| abstract_inverted_index.using | 69, 136, 215 |
| abstract_inverted_index.which | 262 |
| abstract_inverted_index.while | 227 |
| abstract_inverted_index.(DBH), | 32 |
| abstract_inverted_index.Korea: | 185 |
| abstract_inverted_index.alone. | 170 |
| abstract_inverted_index.breast | 30 |
| abstract_inverted_index.errors | 42 |
| abstract_inverted_index.factor | 5 |
| abstract_inverted_index.forest | 10, 284 |
| abstract_inverted_index.height | 31, 55, 139 |
| abstract_inverted_index.hybrid | 151, 201, 225, 245, 258 |
| abstract_inverted_index.method | 173, 204, 246 |
| abstract_inverted_index.model, | 268 |
| abstract_inverted_index.models | 91 |
| abstract_inverted_index.modern | 80 |
| abstract_inverted_index.points | 163 |
| abstract_inverted_index.showed | 205 |
| abstract_inverted_index.volume | 1, 15, 68, 202, 259 |
| abstract_inverted_index.(LiDAR) | 74 |
| abstract_inverted_index.address | 58 |
| abstract_inverted_index.allowed | 100 |
| abstract_inverted_index.arising | 43 |
| abstract_inverted_index.between | 194 |
| abstract_inverted_index.earlier | 118 |
| abstract_inverted_index.enabled | 149 |
| abstract_inverted_index.forests | 93 |
| abstract_inverted_index.height. | 35 |
| abstract_inverted_index.heights | 106 |
| abstract_inverted_index.issues, | 60 |
| abstract_inverted_index.method, | 226, 261 |
| abstract_inverted_index.precise | 102 |
| abstract_inverted_index.ranging | 73 |
| abstract_inverted_index.spatial | 45 |
| abstract_inverted_index.species | 183 |
| abstract_inverted_index.various | 111 |
| abstract_inverted_index.volume, | 156 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.accuracy | 282 |
| abstract_inverted_index.approach | 99, 152, 198, 219 |
| abstract_inverted_index.commonly | 17 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.diameter | 28, 141 |
| abstract_inverted_index.directly | 165 |
| abstract_inverted_index.estimate | 66 |
| abstract_inverted_index.heights, | 112 |
| abstract_inverted_index.managing | 7 |
| abstract_inverted_index.methods. | 120 |
| abstract_inverted_index.present, | 13 |
| abstract_inverted_index.proposed | 172 |
| abstract_inverted_index.resource | 285 |
| abstract_inverted_index.systems. | 97 |
| abstract_inverted_index.utilizes | 26 |
| abstract_inverted_index.approach. | 255 |
| abstract_inverted_index.detection | 71 |
| abstract_inverted_index.developed | 130 |
| abstract_inverted_index.diameters | 109, 161 |
| abstract_inverted_index.estimated | 18 |
| abstract_inverted_index.estimates | 38 |
| abstract_inverted_index.evaluated | 177 |
| abstract_inverted_index.forestry. | 82 |
| abstract_inverted_index.improving | 280 |
| abstract_inverted_index.overcomes | 269 |
| abstract_inverted_index.precision | 81 |
| abstract_inverted_index.sampling, | 27 |
| abstract_inverted_index.accurately | 65 |
| abstract_inverted_index.approaches | 276 |
| abstract_inverted_index.comparison | 193 |
| abstract_inverted_index.estimates. | 142 |
| abstract_inverted_index.estimating | 154 |
| abstract_inverted_index.estimation | 203, 241, 260 |
| abstract_inverted_index.evaluating | 9 |
| abstract_inverted_index.indirectly | 19 |
| abstract_inverted_index.individual | 133 |
| abstract_inverted_index.integrates | 263 |
| abstract_inverted_index.kaempferi, | 230 |
| abstract_inverted_index.kaempferi. | 190 |
| abstract_inverted_index.koraiensis | 187 |
| abstract_inverted_index.mitigating | 114 |
| abstract_inverted_index.resources. | 11 |
| abstract_inverted_index.variations | 49 |
| abstract_inverted_index.Integrating | 143 |
| abstract_inverted_index.calculation | 159 |
| abstract_inverted_index.constrained | 40 |
| abstract_inverted_index.contributes | 278 |
| abstract_inverted_index.curve-based | 197, 218, 254, 275 |
| abstract_inverted_index.effectively | 113 |
| abstract_inverted_index.environment | 48 |
| abstract_inverted_index.implemented | 175 |
| abstract_inverted_index.koraiensis, | 209 |
| abstract_inverted_index.limitations | 116, 271 |
| abstract_inverted_index.measurement | 119 |
| abstract_inverted_index.monitoring. | 286 |
| abstract_inverted_index.significant | 181 |
| abstract_inverted_index.technology, | 75 |
| abstract_inverted_index.constructing | 21 |
| abstract_inverted_index.conventional | 273 |
| abstract_inverted_index.economically | 180 |
| abstract_inverted_index.facilitating | 157 |
| abstract_inverted_index.identifiable | 166 |
| abstract_inverted_index.measurements | 103 |
| abstract_inverted_index.Consequently, | 256 |
| abstract_inverted_index.LiDAR-derived | 137 |
| abstract_inverted_index.approximately | 248 |
| abstract_inverted_index.comprehensive | 89 |
| abstract_inverted_index.measurements. | 56 |
| abstract_inverted_index.respectively. | 239 |
| abstract_inverted_index.uncertainties | 53 |
| abstract_inverted_index.multi-platform | 95 |
| abstract_inverted_index.three-dimensional | 90 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.91116205 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |