Adversarial Adaptation for French Named Entity Recognition Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.05220
Named Entity Recognition (NER) is the task of identifying and classifying named entities in large-scale texts into predefined classes. NER in French and other relatively limited-resource languages cannot always benefit from approaches proposed for languages like English due to a dearth of large, robust datasets. In this paper, we present our work that aims to mitigate the effects of this dearth of large, labeled datasets. We propose a Transformer-based NER approach for French, using adversarial adaptation to similar domain or general corpora to improve feature extraction and enable better generalization. Our approach allows learning better features using large-scale unlabeled corpora from the same domain or mixed domains to introduce more variations during training and reduce overfitting. Experimental results on three labeled datasets show that our adaptation framework outperforms the corresponding non-adaptive models for various combinations of Transformer models, source datasets, and target corpora. We also show that adversarial adaptation to large-scale unlabeled corpora can help mitigate the performance dip incurred on using Transformer models pre-trained on smaller corpora.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.05220
- https://arxiv.org/pdf/2301.05220
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4316135769
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4316135769Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.05220Digital Object Identifier
- Title
-
Adversarial Adaptation for French Named Entity RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-12Full publication date if available
- Authors
-
Arjun Choudhry, Inder Khatri, Pankaj Gupta, Aaryan Gupta, Maxime Nicol, Marie‐Jean Meurs, Dinesh Kumar VishwakarmaList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.05220Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.05220Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.05220Direct OA link when available
- Concepts
-
Overfitting, Computer science, Named-entity recognition, Domain adaptation, Transformer, Adversarial system, Artificial intelligence, Natural language processing, Machine learning, Adaptation (eye), Task (project management), Labeled data, Artificial neural network, Classifier (UML), Physics, Optics, Economics, Voltage, Quantum mechanics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4316135769 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.05220 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.05220 |
| ids.openalex | https://openalex.org/W4316135769 |
| fwci | |
| type | preprint |
| title | Adversarial Adaptation for French Named Entity Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13629 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9438999891281128 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text Readability and Simplification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8681965470314026 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8331003189086914 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779135771 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7258390188217163 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q403574 |
| concepts[2].display_name | Named-entity recognition |
| concepts[3].id | https://openalex.org/C2776434776 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7242703437805176 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[3].display_name | Domain adaptation |
| concepts[4].id | https://openalex.org/C66322947 |
| concepts[4].level | 3 |
| concepts[4].score | 0.7165780067443848 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[4].display_name | Transformer |
| concepts[5].id | https://openalex.org/C37736160 |
| concepts[5].level | 2 |
| concepts[5].score | 0.673862099647522 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[5].display_name | Adversarial system |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.6423941254615784 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5346125364303589 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4771656095981598 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C139807058 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4634542167186737 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[9].display_name | Adaptation (eye) |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4468272924423218 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C2776145971 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42104285955429077 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[11].display_name | Labeled data |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.1131710410118103 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| concepts[13].id | https://openalex.org/C95623464 |
| concepts[13].level | 2 |
| concepts[13].score | 0.10584083199501038 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[13].display_name | Classifier (UML) |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C165801399 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[17].display_name | Voltage |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C187736073 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[19].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.8681965470314026 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8331003189086914 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/named-entity-recognition |
| keywords[2].score | 0.7258390188217163 |
| keywords[2].display_name | Named-entity recognition |
| keywords[3].id | https://openalex.org/keywords/domain-adaptation |
| keywords[3].score | 0.7242703437805176 |
| keywords[3].display_name | Domain adaptation |
| keywords[4].id | https://openalex.org/keywords/transformer |
| keywords[4].score | 0.7165780067443848 |
| keywords[4].display_name | Transformer |
| keywords[5].id | https://openalex.org/keywords/adversarial-system |
| keywords[5].score | 0.673862099647522 |
| keywords[5].display_name | Adversarial system |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.6423941254615784 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.5346125364303589 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4771656095981598 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/adaptation |
| keywords[9].score | 0.4634542167186737 |
| keywords[9].display_name | Adaptation (eye) |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.4468272924423218 |
| keywords[10].display_name | Task (project management) |
| keywords[11].id | https://openalex.org/keywords/labeled-data |
| keywords[11].score | 0.42104285955429077 |
| keywords[11].display_name | Labeled data |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.1131710410118103 |
| keywords[12].display_name | Artificial neural network |
| keywords[13].id | https://openalex.org/keywords/classifier |
| keywords[13].score | 0.10584083199501038 |
| keywords[13].display_name | Classifier (UML) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.05220 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.05220 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.05220 |
| locations[1].id | doi:10.48550/arxiv.2301.05220 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.05220 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5071233426 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3416-6020 |
| authorships[0].author.display_name | Arjun Choudhry |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Choudhry, Arjun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091123666 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3462-1062 |
| authorships[1].author.display_name | Inder Khatri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khatri, Inder |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100746370 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6490-8523 |
| authorships[2].author.display_name | Pankaj Gupta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gupta, Pankaj |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059908821 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aaryan Gupta |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gupta, Aaryan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5022724406 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1476-818X |
| authorships[4].author.display_name | Maxime Nicol |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nicol, Maxime |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5014324079 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8196-2153 |
| authorships[5].author.display_name | Marie‐Jean Meurs |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Meurs, Marie-Jean |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5021449557 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1026-0047 |
| authorships[6].author.display_name | Dinesh Kumar Vishwakarma |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Vishwakarma, Dinesh Kumar |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.05220 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adversarial Adaptation for French Named Entity Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4385571636, https://openalex.org/W2573722871, https://openalex.org/W4310925487, https://openalex.org/W3037747687, https://openalex.org/W4382318276, https://openalex.org/W3006421644, https://openalex.org/W4385567153, https://openalex.org/W3035557009, https://openalex.org/W4206947710, https://openalex.org/W2997340383 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.05220 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.05220 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.05220 |
| primary_location.id | pmh:oai:arXiv.org:2301.05220 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.05220 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.05220 |
| publication_date | 2023-01-12 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 67 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.We | 65, 143 |
| abstract_inverted_index.in | 13, 20 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 7, 41, 58, 61, 135 |
| abstract_inverted_index.on | 118, 160, 165 |
| abstract_inverted_index.or | 79, 104 |
| abstract_inverted_index.to | 38, 54, 76, 82, 107, 149 |
| abstract_inverted_index.we | 48 |
| abstract_inverted_index.NER | 19, 69 |
| abstract_inverted_index.Our | 90 |
| abstract_inverted_index.and | 9, 22, 86, 113, 140 |
| abstract_inverted_index.can | 153 |
| abstract_inverted_index.dip | 158 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 33, 71, 132 |
| abstract_inverted_index.our | 50, 124 |
| abstract_inverted_index.the | 5, 56, 101, 128, 156 |
| abstract_inverted_index.aims | 53 |
| abstract_inverted_index.also | 144 |
| abstract_inverted_index.from | 30, 100 |
| abstract_inverted_index.help | 154 |
| abstract_inverted_index.into | 16 |
| abstract_inverted_index.like | 35 |
| abstract_inverted_index.more | 109 |
| abstract_inverted_index.same | 102 |
| abstract_inverted_index.show | 122, 145 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.that | 52, 123, 146 |
| abstract_inverted_index.this | 46, 59 |
| abstract_inverted_index.work | 51 |
| abstract_inverted_index.(NER) | 3 |
| abstract_inverted_index.Named | 0 |
| abstract_inverted_index.mixed | 105 |
| abstract_inverted_index.named | 11 |
| abstract_inverted_index.other | 23 |
| abstract_inverted_index.texts | 15 |
| abstract_inverted_index.three | 119 |
| abstract_inverted_index.using | 73, 96, 161 |
| abstract_inverted_index.Entity | 1 |
| abstract_inverted_index.French | 21 |
| abstract_inverted_index.allows | 92 |
| abstract_inverted_index.always | 28 |
| abstract_inverted_index.better | 88, 94 |
| abstract_inverted_index.cannot | 27 |
| abstract_inverted_index.dearth | 40, 60 |
| abstract_inverted_index.domain | 78, 103 |
| abstract_inverted_index.during | 111 |
| abstract_inverted_index.enable | 87 |
| abstract_inverted_index.large, | 42, 62 |
| abstract_inverted_index.models | 131, 163 |
| abstract_inverted_index.paper, | 47 |
| abstract_inverted_index.reduce | 114 |
| abstract_inverted_index.robust | 43 |
| abstract_inverted_index.source | 138 |
| abstract_inverted_index.target | 141 |
| abstract_inverted_index.English | 36 |
| abstract_inverted_index.French, | 72 |
| abstract_inverted_index.benefit | 29 |
| abstract_inverted_index.corpora | 81, 99, 152 |
| abstract_inverted_index.domains | 106 |
| abstract_inverted_index.effects | 57 |
| abstract_inverted_index.feature | 84 |
| abstract_inverted_index.general | 80 |
| abstract_inverted_index.improve | 83 |
| abstract_inverted_index.labeled | 63, 120 |
| abstract_inverted_index.models, | 137 |
| abstract_inverted_index.present | 49 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.results | 117 |
| abstract_inverted_index.similar | 77 |
| abstract_inverted_index.smaller | 166 |
| abstract_inverted_index.various | 133 |
| abstract_inverted_index.approach | 70, 91 |
| abstract_inverted_index.classes. | 18 |
| abstract_inverted_index.corpora. | 142, 167 |
| abstract_inverted_index.datasets | 121 |
| abstract_inverted_index.entities | 12 |
| abstract_inverted_index.features | 95 |
| abstract_inverted_index.incurred | 159 |
| abstract_inverted_index.learning | 93 |
| abstract_inverted_index.mitigate | 55, 155 |
| abstract_inverted_index.proposed | 32 |
| abstract_inverted_index.training | 112 |
| abstract_inverted_index.datasets, | 139 |
| abstract_inverted_index.datasets. | 44, 64 |
| abstract_inverted_index.framework | 126 |
| abstract_inverted_index.introduce | 108 |
| abstract_inverted_index.languages | 26, 34 |
| abstract_inverted_index.unlabeled | 98, 151 |
| abstract_inverted_index.adaptation | 75, 125, 148 |
| abstract_inverted_index.approaches | 31 |
| abstract_inverted_index.extraction | 85 |
| abstract_inverted_index.predefined | 17 |
| abstract_inverted_index.relatively | 24 |
| abstract_inverted_index.variations | 110 |
| abstract_inverted_index.Recognition | 2 |
| abstract_inverted_index.Transformer | 136, 162 |
| abstract_inverted_index.adversarial | 74, 147 |
| abstract_inverted_index.classifying | 10 |
| abstract_inverted_index.identifying | 8 |
| abstract_inverted_index.large-scale | 14, 97, 150 |
| abstract_inverted_index.outperforms | 127 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.pre-trained | 164 |
| abstract_inverted_index.Experimental | 116 |
| abstract_inverted_index.combinations | 134 |
| abstract_inverted_index.non-adaptive | 130 |
| abstract_inverted_index.overfitting. | 115 |
| abstract_inverted_index.corresponding | 129 |
| abstract_inverted_index.generalization. | 89 |
| abstract_inverted_index.limited-resource | 25 |
| abstract_inverted_index.Transformer-based | 68 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |