Adversarial attack detection framework based on optimized weighted conditional stepwise adversarial network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s10207-024-00844-w
Artificial Intelligence (AI)-based IDS systems are susceptible to adversarial attacks and face challenges such as complex evaluation methods, elevated false positive rates, absence of effective validation, and time-intensive processes. This study proposes a WCSAN-PSO framework to detect adversarial attacks in IDS based on a weighted conditional stepwise adversarial network (WCSAN) with a particle swarm optimization (PSO) algorithm and SVC (support vector classifier) for classification. The Principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) are used for feature selection and extraction. The PSO algorithm optimizes the parameters of the generator and discriminator in WCSAN to improve the adversarial training of IDS. The study presented three distinct scenarios with quantitative evaluation, and the proposed framework is evaluated with adversarial training in balanced and imbalanced data. Compared with existing studies, the proposed framework accomplished an accuracy of 99.36% in normal and 98.55% in malicious traffic in adversarial attacks. This study presents a comprehensive overview for researchers interested in adversarial attacks and their significance in computer security.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10207-024-00844-w
- https://link.springer.com/content/pdf/10.1007/s10207-024-00844-w.pdf
- OA Status
- hybrid
- Cited By
- 19
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394755835
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394755835Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10207-024-00844-wDigital Object Identifier
- Title
-
Adversarial attack detection framework based on optimized weighted conditional stepwise adversarial networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-12Full publication date if available
- Authors
-
Kousik Barik, Sanjay Misra, Luis Fernández SanzList of authors in order
- Landing page
-
https://doi.org/10.1007/s10207-024-00844-wPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10207-024-00844-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10207-024-00844-w.pdfDirect OA link when available
- Concepts
-
Adversarial system, Computer science, Discriminator, Artificial intelligence, Feature selection, Classifier (UML), Data mining, Machine learning, Pattern recognition (psychology), Detector, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394755835 |
|---|---|
| doi | https://doi.org/10.1007/s10207-024-00844-w |
| ids.doi | https://doi.org/10.1007/s10207-024-00844-w |
| ids.openalex | https://openalex.org/W4394755835 |
| fwci | 15.90045592 |
| type | article |
| title | Adversarial attack detection framework based on optimized weighted conditional stepwise adversarial network |
| biblio.issue | 3 |
| biblio.volume | 23 |
| biblio.last_page | 2376 |
| biblio.first_page | 2353 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9984999895095825 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list.value | 2590 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3190 |
| apc_paid.value | 2590 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3190 |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8756436109542847 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7702081799507141 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779803651 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6610366106033325 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5282088 |
| concepts[2].display_name | Discriminator |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6087773442268372 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C148483581 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5479292273521423 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[4].display_name | Feature selection |
| concepts[5].id | https://openalex.org/C95623464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4916556477546692 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[5].display_name | Classifier (UML) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44429469108581543 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44000864028930664 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3215115964412689 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C94915269 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[9].display_name | Detector |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.8756436109542847 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7702081799507141 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/discriminator |
| keywords[2].score | 0.6610366106033325 |
| keywords[2].display_name | Discriminator |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6087773442268372 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/feature-selection |
| keywords[4].score | 0.5479292273521423 |
| keywords[4].display_name | Feature selection |
| keywords[5].id | https://openalex.org/keywords/classifier |
| keywords[5].score | 0.4916556477546692 |
| keywords[5].display_name | Classifier (UML) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.44429469108581543 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.44000864028930664 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3215115964412689 |
| keywords[8].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1007/s10207-024-00844-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S164062316 |
| locations[0].source.issn | 1615-5262, 1615-5270 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1615-5262 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Information Security |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10207-024-00844-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Information Security |
| locations[0].landing_page_url | https://doi.org/10.1007/s10207-024-00844-w |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5010619713 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9296-9561 |
| authorships[0].author.display_name | Kousik Barik |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I189268942 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Alcala, Madrid, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I189268942 |
| authorships[0].institutions[0].ror | https://ror.org/04pmn0e78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I189268942 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad de Alcalá |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kousik Barik |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Alcala, Madrid, Spain |
| authorships[1].author.id | https://openalex.org/A5064136287 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3556-9331 |
| authorships[1].author.display_name | Sanjay Misra |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3130438513 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Applied Data Science, Institute for Energy Technology, Halden, Norway |
| authorships[1].institutions[0].id | https://openalex.org/I3130438513 |
| authorships[1].institutions[0].ror | https://ror.org/02jqtg033 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I3130438513 |
| authorships[1].institutions[0].country_code | NO |
| authorships[1].institutions[0].display_name | Institute for Energy Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sanjay Misra |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Applied Data Science, Institute for Energy Technology, Halden, Norway |
| authorships[2].author.id | https://openalex.org/A5044499999 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0778-0073 |
| authorships[2].author.display_name | Luis Fernández Sanz |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189268942 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Alcala, Madrid, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I189268942 |
| authorships[2].institutions[0].ror | https://ror.org/04pmn0e78 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189268942 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universidad de Alcalá |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Luis Fernandez-Sanz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of Alcala, Madrid, Spain |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10207-024-00844-w.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adversarial attack detection framework based on optimized weighted conditional stepwise adversarial network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W4293202849, https://openalex.org/W1980965563, https://openalex.org/W1489300767, https://openalex.org/W2387995142, https://openalex.org/W4380714744, https://openalex.org/W2995777218, https://openalex.org/W2596763562, https://openalex.org/W2964218010, https://openalex.org/W2808862658, https://openalex.org/W3087789538 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10207-024-00844-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S164062316 |
| best_oa_location.source.issn | 1615-5262, 1615-5270 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1615-5262 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Information Security |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10207-024-00844-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Information Security |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10207-024-00844-w |
| primary_location.id | doi:10.1007/s10207-024-00844-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S164062316 |
| primary_location.source.issn | 1615-5262, 1615-5270 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1615-5262 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Information Security |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10207-024-00844-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Information Security |
| primary_location.landing_page_url | https://doi.org/10.1007/s10207-024-00844-w |
| publication_date | 2024-04-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3191326581, https://openalex.org/W4321205418, https://openalex.org/W4309797028, https://openalex.org/W4313591247, https://openalex.org/W4315798510, https://openalex.org/W4313204989, https://openalex.org/W4385380338, https://openalex.org/W4386261706, https://openalex.org/W4390755438, https://openalex.org/W4225858632, https://openalex.org/W3163963286, https://openalex.org/W3168146198, https://openalex.org/W4385687973, https://openalex.org/W3185244527, https://openalex.org/W4310968096, https://openalex.org/W4385973175, https://openalex.org/W4391097056, https://openalex.org/W4391655946, https://openalex.org/W3135028703, https://openalex.org/W2951402759, https://openalex.org/W2963433607, https://openalex.org/W3004495293, https://openalex.org/W2810292802, https://openalex.org/W2110531057, https://openalex.org/W2141254179, https://openalex.org/W3001683812, https://openalex.org/W3093410479, https://openalex.org/W4220693827, https://openalex.org/W2911505293, https://openalex.org/W3007394313, https://openalex.org/W3133706083, https://openalex.org/W2914502888, https://openalex.org/W3009569043, https://openalex.org/W2946127746, https://openalex.org/W3115360974, https://openalex.org/W3198511875, https://openalex.org/W3132842072, https://openalex.org/W4384823681, https://openalex.org/W3209492459, https://openalex.org/W4285055378, https://openalex.org/W4284994113, https://openalex.org/W4288720746, https://openalex.org/W4308088200, https://openalex.org/W1766616401, https://openalex.org/W3017217726, https://openalex.org/W3012546138, https://openalex.org/W3008195198, https://openalex.org/W3044456020, https://openalex.org/W4293386766, https://openalex.org/W4387427776, https://openalex.org/W4381322723, https://openalex.org/W4387806828, https://openalex.org/W2994866269, https://openalex.org/W3033675321, https://openalex.org/W3203880515, https://openalex.org/W4385413326, https://openalex.org/W4319997993, https://openalex.org/W3130106680, https://openalex.org/W3176065393, https://openalex.org/W3048377462 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 33, 44, 52, 154 |
| abstract_inverted_index.an | 137 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.in | 40, 97, 124, 141, 145, 148, 160, 166 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.of | 24, 92, 104, 139 |
| abstract_inverted_index.on | 43 |
| abstract_inverted_index.to | 8, 36, 99 |
| abstract_inverted_index.IDS | 4, 41 |
| abstract_inverted_index.PSO | 87 |
| abstract_inverted_index.SVC | 59 |
| abstract_inverted_index.The | 65, 86, 106 |
| abstract_inverted_index.and | 11, 27, 58, 70, 75, 84, 95, 115, 126, 143, 163 |
| abstract_inverted_index.are | 6, 79 |
| abstract_inverted_index.for | 63, 81, 157 |
| abstract_inverted_index.the | 71, 90, 93, 101, 116, 133 |
| abstract_inverted_index.IDS. | 105 |
| abstract_inverted_index.This | 30, 151 |
| abstract_inverted_index.face | 12 |
| abstract_inverted_index.such | 14 |
| abstract_inverted_index.used | 80 |
| abstract_inverted_index.with | 51, 112, 121, 130 |
| abstract_inverted_index.(PCA) | 69 |
| abstract_inverted_index.(PSO) | 56 |
| abstract_inverted_index.WCSAN | 98 |
| abstract_inverted_index.based | 42 |
| abstract_inverted_index.data. | 128 |
| abstract_inverted_index.false | 20 |
| abstract_inverted_index.least | 72 |
| abstract_inverted_index.study | 31, 107, 152 |
| abstract_inverted_index.swarm | 54 |
| abstract_inverted_index.their | 164 |
| abstract_inverted_index.three | 109 |
| abstract_inverted_index.98.55% | 144 |
| abstract_inverted_index.99.36% | 140 |
| abstract_inverted_index.detect | 37 |
| abstract_inverted_index.normal | 142 |
| abstract_inverted_index.rates, | 22 |
| abstract_inverted_index.vector | 61 |
| abstract_inverted_index.(LASSO) | 78 |
| abstract_inverted_index.(WCSAN) | 50 |
| abstract_inverted_index.absence | 23 |
| abstract_inverted_index.attacks | 10, 39, 162 |
| abstract_inverted_index.complex | 16 |
| abstract_inverted_index.feature | 82 |
| abstract_inverted_index.improve | 100 |
| abstract_inverted_index.network | 49 |
| abstract_inverted_index.systems | 5 |
| abstract_inverted_index.traffic | 147 |
| abstract_inverted_index.(support | 60 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 129 |
| abstract_inverted_index.absolute | 73 |
| abstract_inverted_index.accuracy | 138 |
| abstract_inverted_index.analysis | 68 |
| abstract_inverted_index.attacks. | 150 |
| abstract_inverted_index.balanced | 125 |
| abstract_inverted_index.computer | 167 |
| abstract_inverted_index.distinct | 110 |
| abstract_inverted_index.elevated | 19 |
| abstract_inverted_index.existing | 131 |
| abstract_inverted_index.methods, | 18 |
| abstract_inverted_index.operator | 77 |
| abstract_inverted_index.overview | 156 |
| abstract_inverted_index.particle | 53 |
| abstract_inverted_index.positive | 21 |
| abstract_inverted_index.presents | 153 |
| abstract_inverted_index.proposed | 117, 134 |
| abstract_inverted_index.proposes | 32 |
| abstract_inverted_index.stepwise | 47 |
| abstract_inverted_index.studies, | 132 |
| abstract_inverted_index.training | 103, 123 |
| abstract_inverted_index.weighted | 45 |
| abstract_inverted_index.Principal | 66 |
| abstract_inverted_index.WCSAN-PSO | 34 |
| abstract_inverted_index.algorithm | 57, 88 |
| abstract_inverted_index.component | 67 |
| abstract_inverted_index.effective | 25 |
| abstract_inverted_index.evaluated | 120 |
| abstract_inverted_index.framework | 35, 118, 135 |
| abstract_inverted_index.generator | 94 |
| abstract_inverted_index.malicious | 146 |
| abstract_inverted_index.optimizes | 89 |
| abstract_inverted_index.presented | 108 |
| abstract_inverted_index.scenarios | 111 |
| abstract_inverted_index.security. | 168 |
| abstract_inverted_index.selection | 76, 83 |
| abstract_inverted_index.shrinkage | 74 |
| abstract_inverted_index.(AI)-based | 3 |
| abstract_inverted_index.Artificial | 1 |
| abstract_inverted_index.challenges | 13 |
| abstract_inverted_index.evaluation | 17 |
| abstract_inverted_index.imbalanced | 127 |
| abstract_inverted_index.interested | 159 |
| abstract_inverted_index.parameters | 91 |
| abstract_inverted_index.processes. | 29 |
| abstract_inverted_index.adversarial | 9, 38, 48, 102, 122, 149, 161 |
| abstract_inverted_index.classifier) | 62 |
| abstract_inverted_index.conditional | 46 |
| abstract_inverted_index.evaluation, | 114 |
| abstract_inverted_index.extraction. | 85 |
| abstract_inverted_index.researchers | 158 |
| abstract_inverted_index.susceptible | 7 |
| abstract_inverted_index.validation, | 26 |
| abstract_inverted_index.Intelligence | 2 |
| abstract_inverted_index.accomplished | 136 |
| abstract_inverted_index.optimization | 55 |
| abstract_inverted_index.quantitative | 113 |
| abstract_inverted_index.significance | 165 |
| abstract_inverted_index.comprehensive | 155 |
| abstract_inverted_index.discriminator | 96 |
| abstract_inverted_index.time-intensive | 28 |
| abstract_inverted_index.classification. | 64 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5064136287 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I3130438513 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.98283907 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |