Adversarial attacks in signature verification: a deep learning approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.11591/csit.v5i3.p215-226
Handwritten signature recognition in forensic science is crucial for identity and document authentication. While serving as a legal representation of a person’s agreement or consent to the contents of a document, handwritten signatures de termine the authenticity of a document, identify forgeries, pinpoint the suspects and support other pieces of evidence like ink or document analysis. This work focuses on developing and evaluating a handwritten signature verification sys tem using a convolutional neural network (CNN) and emphasising the model’s efficacy using hand-crafted adversarial attacks. Initially, handwritten signatures have been collected from sixteen volunteers, each contributing ten samples, fol lowed by image normalization and augmentation to boost synthetic data samples and overcome the data scarcity. The proposed model achieved a testing accu racy of 91.35% using an 80:20 train-test split. Additionally, using the five-fold cross-validation, the model achieved a robust validation accuracy of nearly 98%. Finally, the introduction of manually constructed adversarial assaults on the sig nature images undermines the model’s accuracy, bringing the accuracy down to nearly 80%. This highlights the need to consider adversarial resilience while designing deep learning models for classification tasks. Exposing the model to real look-alike fake samples is critical while testing its robustness and refining the model using trial and error methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/csit.v5i3.p215-226
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403692998
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403692998Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/csit.v5i3.p215-226Digital Object Identifier
- Title
-
Adversarial attacks in signature verification: a deep learning approachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-23Full publication date if available
- Authors
-
Abhisek Hazra, Saroj Maity, Barnali Pal, Asok BandyopadhyayList of authors in order
- Landing page
-
https://doi.org/10.11591/csit.v5i3.p215-226Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.11591/csit.v5i3.p215-226Direct OA link when available
- Concepts
-
Adversarial system, Signature (topology), Computer science, Artificial intelligence, Deep learning, Computer security, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403692998 |
|---|---|
| doi | https://doi.org/10.11591/csit.v5i3.p215-226 |
| ids.doi | https://doi.org/10.11591/csit.v5i3.p215-226 |
| ids.openalex | https://openalex.org/W4403692998 |
| fwci | 0.53015756 |
| type | article |
| title | Adversarial attacks in signature verification: a deep learning approach |
| biblio.issue | 3 |
| biblio.volume | 5 |
| biblio.last_page | 226 |
| biblio.first_page | 215 |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.960099995136261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9509999752044678 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.942300021648407 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8002511858940125 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C2779696439 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7475794553756714 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7512811 |
| concepts[1].display_name | Signature (topology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6139382123947144 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5616691708564758 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.452075719833374 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C38652104 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3634401559829712 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[5].display_name | Computer security |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.12803366780281067 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C2524010 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[7].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.8002511858940125 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/signature |
| keywords[1].score | 0.7475794553756714 |
| keywords[1].display_name | Signature (topology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6139382123947144 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5616691708564758 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.452075719833374 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/computer-security |
| keywords[5].score | 0.3634401559829712 |
| keywords[5].display_name | Computer security |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.12803366780281067 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.11591/csit.v5i3.p215-226 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210218571 |
| locations[0].source.issn | 2722-3221, 2722-323X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2722-3221 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computer Science and Information Technologies |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computer Science and Information Technologies |
| locations[0].landing_page_url | https://doi.org/10.11591/csit.v5i3.p215-226 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043636415 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0141-4339 |
| authorships[0].author.display_name | Abhisek Hazra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abhisek Hazra |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072408183 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-3404-9515 |
| authorships[1].author.display_name | Saroj Maity |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shuvajit Maity |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056243655 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7415-1176 |
| authorships[2].author.display_name | Barnali Pal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Barnali Pal |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5007675306 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5519-8670 |
| authorships[3].author.display_name | Asok Bandyopadhyay |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Asok Bandyopadhyay |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.11591/csit.v5i3.p215-226 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adversarial attacks in signature verification: a deep learning approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.960099995136261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W4321369474, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756, https://openalex.org/W4323565446 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/csit.v5i3.p215-226 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210218571 |
| best_oa_location.source.issn | 2722-3221, 2722-323X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2722-3221 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computer Science and Information Technologies |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computer Science and Information Technologies |
| best_oa_location.landing_page_url | https://doi.org/10.11591/csit.v5i3.p215-226 |
| primary_location.id | doi:10.11591/csit.v5i3.p215-226 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210218571 |
| primary_location.source.issn | 2722-3221, 2722-323X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2722-3221 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computer Science and Information Technologies |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computer Science and Information Technologies |
| primary_location.landing_page_url | https://doi.org/10.11591/csit.v5i3.p215-226 |
| publication_date | 2024-10-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 20, 29, 38, 63, 70, 118, 137 |
| abstract_inverted_index.an | 125 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.by | 99 |
| abstract_inverted_index.de | 33 |
| abstract_inverted_index.in | 3 |
| abstract_inverted_index.is | 6, 192 |
| abstract_inverted_index.of | 19, 28, 37, 49, 122, 141, 147 |
| abstract_inverted_index.on | 59, 152 |
| abstract_inverted_index.or | 23, 53 |
| abstract_inverted_index.to | 25, 104, 165, 172, 187 |
| abstract_inverted_index.The | 114 |
| abstract_inverted_index.and | 10, 45, 61, 75, 102, 109, 198, 204 |
| abstract_inverted_index.fol | 97 |
| abstract_inverted_index.for | 8, 181 |
| abstract_inverted_index.ink | 52 |
| abstract_inverted_index.its | 196 |
| abstract_inverted_index.sig | 154 |
| abstract_inverted_index.sys | 67 |
| abstract_inverted_index.tem | 68 |
| abstract_inverted_index.ten | 95 |
| abstract_inverted_index.the | 26, 35, 43, 77, 111, 131, 134, 145, 153, 158, 162, 170, 185, 200 |
| abstract_inverted_index.80%. | 167 |
| abstract_inverted_index.98%. | 143 |
| abstract_inverted_index.This | 56, 168 |
| abstract_inverted_index.accu | 120 |
| abstract_inverted_index.been | 88 |
| abstract_inverted_index.data | 107, 112 |
| abstract_inverted_index.deep | 178 |
| abstract_inverted_index.down | 164 |
| abstract_inverted_index.each | 93 |
| abstract_inverted_index.fake | 190 |
| abstract_inverted_index.from | 90 |
| abstract_inverted_index.have | 87 |
| abstract_inverted_index.like | 51 |
| abstract_inverted_index.need | 171 |
| abstract_inverted_index.racy | 121 |
| abstract_inverted_index.real | 188 |
| abstract_inverted_index.work | 57 |
| abstract_inverted_index.(CNN) | 74 |
| abstract_inverted_index.80:20 | 126 |
| abstract_inverted_index.While | 13 |
| abstract_inverted_index.boost | 105 |
| abstract_inverted_index.error | 205 |
| abstract_inverted_index.image | 100 |
| abstract_inverted_index.legal | 17 |
| abstract_inverted_index.lowed | 98 |
| abstract_inverted_index.model | 116, 135, 186, 201 |
| abstract_inverted_index.other | 47 |
| abstract_inverted_index.trial | 203 |
| abstract_inverted_index.using | 69, 80, 124, 130, 202 |
| abstract_inverted_index.while | 176, 194 |
| abstract_inverted_index.91.35% | 123 |
| abstract_inverted_index.images | 156 |
| abstract_inverted_index.models | 180 |
| abstract_inverted_index.nature | 155 |
| abstract_inverted_index.nearly | 142, 166 |
| abstract_inverted_index.neural | 72 |
| abstract_inverted_index.pieces | 48 |
| abstract_inverted_index.robust | 138 |
| abstract_inverted_index.split. | 128 |
| abstract_inverted_index.tasks. | 183 |
| abstract_inverted_index.consent | 24 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.focuses | 58 |
| abstract_inverted_index.network | 73 |
| abstract_inverted_index.samples | 108, 191 |
| abstract_inverted_index.science | 5 |
| abstract_inverted_index.serving | 14 |
| abstract_inverted_index.sixteen | 91 |
| abstract_inverted_index.support | 46 |
| abstract_inverted_index.termine | 34 |
| abstract_inverted_index.testing | 119, 195 |
| abstract_inverted_index.Exposing | 184 |
| abstract_inverted_index.Finally, | 144 |
| abstract_inverted_index.accuracy | 140, 163 |
| abstract_inverted_index.achieved | 117, 136 |
| abstract_inverted_index.assaults | 151 |
| abstract_inverted_index.attacks. | 83 |
| abstract_inverted_index.bringing | 161 |
| abstract_inverted_index.consider | 173 |
| abstract_inverted_index.contents | 27 |
| abstract_inverted_index.critical | 193 |
| abstract_inverted_index.document | 11, 54 |
| abstract_inverted_index.efficacy | 79 |
| abstract_inverted_index.evidence | 50 |
| abstract_inverted_index.forensic | 4 |
| abstract_inverted_index.identify | 40 |
| abstract_inverted_index.identity | 9 |
| abstract_inverted_index.learning | 179 |
| abstract_inverted_index.manually | 148 |
| abstract_inverted_index.methods. | 206 |
| abstract_inverted_index.overcome | 110 |
| abstract_inverted_index.pinpoint | 42 |
| abstract_inverted_index.proposed | 115 |
| abstract_inverted_index.refining | 199 |
| abstract_inverted_index.samples, | 96 |
| abstract_inverted_index.suspects | 44 |
| abstract_inverted_index.accuracy, | 160 |
| abstract_inverted_index.agreement | 22 |
| abstract_inverted_index.analysis. | 55 |
| abstract_inverted_index.collected | 89 |
| abstract_inverted_index.designing | 177 |
| abstract_inverted_index.document, | 30, 39 |
| abstract_inverted_index.five-fold | 132 |
| abstract_inverted_index.model’s | 78, 159 |
| abstract_inverted_index.scarcity. | 113 |
| abstract_inverted_index.signature | 1, 65 |
| abstract_inverted_index.synthetic | 106 |
| abstract_inverted_index.Initially, | 84 |
| abstract_inverted_index.developing | 60 |
| abstract_inverted_index.evaluating | 62 |
| abstract_inverted_index.forgeries, | 41 |
| abstract_inverted_index.highlights | 169 |
| abstract_inverted_index.look-alike | 189 |
| abstract_inverted_index.person’s | 21 |
| abstract_inverted_index.resilience | 175 |
| abstract_inverted_index.robustness | 197 |
| abstract_inverted_index.signatures | 32, 86 |
| abstract_inverted_index.train-test | 127 |
| abstract_inverted_index.undermines | 157 |
| abstract_inverted_index.validation | 139 |
| abstract_inverted_index.Handwritten | 0 |
| abstract_inverted_index.adversarial | 82, 150, 174 |
| abstract_inverted_index.constructed | 149 |
| abstract_inverted_index.emphasising | 76 |
| abstract_inverted_index.handwritten | 31, 64, 85 |
| abstract_inverted_index.recognition | 2 |
| abstract_inverted_index.volunteers, | 92 |
| abstract_inverted_index.augmentation | 103 |
| abstract_inverted_index.authenticity | 36 |
| abstract_inverted_index.contributing | 94 |
| abstract_inverted_index.hand-crafted | 81 |
| abstract_inverted_index.introduction | 146 |
| abstract_inverted_index.verification | 66 |
| abstract_inverted_index.Additionally, | 129 |
| abstract_inverted_index.convolutional | 71 |
| abstract_inverted_index.normalization | 101 |
| abstract_inverted_index.classification | 182 |
| abstract_inverted_index.representation | 18 |
| abstract_inverted_index.authentication. | 12 |
| abstract_inverted_index.cross-validation, | 133 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.61981072 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |