Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1707.02476
Deep neural networks (DNNs) have excellent representative power and are state of the art classifiers on many tasks. However, they often do not capture their own uncertainties well making them less robust in the real world as they overconfidently extrapolate and do not notice domain shift. Gaussian processes (GPs) with RBF kernels on the other hand have better calibrated uncertainties and do not overconfidently extrapolate far from data in their training set. However, GPs have poor representational power and do not perform as well as DNNs on complex domains. In this paper we show that GP hybrid deep networks, GPDNNs, (GPs on top of DNNs and trained end-to-end) inherit the nice properties of both GPs and DNNs and are much more robust to adversarial examples. When extrapolating to adversarial examples and testing in domain shift settings, GPDNNs frequently output high entropy class probabilities corresponding to essentially "don't know". GPDNNs are therefore promising as deep architectures that know when they don't know.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1707.02476
- https://arxiv.org/pdf/1707.02476
- OA Status
- green
- Cited By
- 122
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2735471653
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2735471653Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1707.02476Digital Object Identifier
- Title
-
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-07-08Full publication date if available
- Authors
-
John Bradshaw, Alexander Matthews, Zoubin GhahramaniList of authors in order
- Landing page
-
https://arxiv.org/abs/1707.02476Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1707.02476Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1707.02476Direct OA link when available
- Concepts
-
Deep neural networks, Computer science, Adversarial system, Robustness (evolution), Artificial intelligence, Gaussian process, Global Positioning System, Gaussian, Machine learning, Deep learning, Artificial neural network, Parametric statistics, Mathematics, Telecommunications, Statistics, Gene, Chemistry, Quantum mechanics, Biochemistry, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
122Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 5, 2023: 5, 2022: 10, 2021: 31, 2020: 23Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2735471653 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1707.02476 |
| ids.doi | https://doi.org/10.48550/arxiv.1707.02476 |
| ids.mag | 2735471653 |
| ids.openalex | https://openalex.org/W2735471653 |
| fwci | |
| type | preprint |
| title | Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9866999983787537 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2984842247 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7614560127258301 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep neural networks |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7074484825134277 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C37736160 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6828226447105408 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[2].display_name | Adversarial system |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5850481390953064 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5795367956161499 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C61326573 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5379650592803955 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[5].display_name | Gaussian process |
| concepts[6].id | https://openalex.org/C60229501 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5247535705566406 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q18822 |
| concepts[6].display_name | Global Positioning System |
| concepts[7].id | https://openalex.org/C163716315 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5110777616500854 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[7].display_name | Gaussian |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4954797029495239 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46677082777023315 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4471316337585449 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C117251300 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43304911255836487 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[11].display_name | Parametric statistics |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1404629349708557 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1068553626537323 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07827451825141907 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C55493867 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[18].display_name | Biochemistry |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[0].score | 0.7614560127258301 |
| keywords[0].display_name | Deep neural networks |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7074484825134277 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/adversarial-system |
| keywords[2].score | 0.6828226447105408 |
| keywords[2].display_name | Adversarial system |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.5850481390953064 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5795367956161499 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/gaussian-process |
| keywords[5].score | 0.5379650592803955 |
| keywords[5].display_name | Gaussian process |
| keywords[6].id | https://openalex.org/keywords/global-positioning-system |
| keywords[6].score | 0.5247535705566406 |
| keywords[6].display_name | Global Positioning System |
| keywords[7].id | https://openalex.org/keywords/gaussian |
| keywords[7].score | 0.5110777616500854 |
| keywords[7].display_name | Gaussian |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4954797029495239 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.46677082777023315 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.4471316337585449 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/parametric-statistics |
| keywords[11].score | 0.43304911255836487 |
| keywords[11].display_name | Parametric statistics |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.1404629349708557 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.1068553626537323 |
| keywords[13].display_name | Telecommunications |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.07827451825141907 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1707.02476 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1707.02476 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1707.02476 |
| locations[1].id | doi:10.48550/arxiv.1707.02476 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1707.02476 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5112088138 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | John Bradshaw |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | John Bradshaw |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5042500383 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7279-9726 |
| authorships[1].author.display_name | Alexander Matthews |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alexander G. de G. Matthews |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010820865 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7464-6475 |
| authorships[2].author.display_name | Zoubin Ghahramani |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zoubin Ghahramani |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1707.02476 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2950183588, https://openalex.org/W3080754722, https://openalex.org/W4383221314, https://openalex.org/W3093978547, https://openalex.org/W2953536436, https://openalex.org/W3203790781, https://openalex.org/W4313346231, https://openalex.org/W2738001131, https://openalex.org/W4285785480, https://openalex.org/W2997056298 |
| cited_by_count | 122 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 31 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 23 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 18 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 25 |
| counts_by_year[7].year | 2017 |
| counts_by_year[7].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1707.02476 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1707.02476 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1707.02476 |
| primary_location.id | pmh:oai:arXiv.org:1707.02476 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1707.02476 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1707.02476 |
| publication_date | 2017-07-08 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2342840547, https://openalex.org/W2511730936, https://openalex.org/W2335728318, https://openalex.org/W2605055943, https://openalex.org/W2953047670, https://openalex.org/W2163605009, https://openalex.org/W2162724919, https://openalex.org/W2963651065, https://openalex.org/W2952677397, https://openalex.org/W2243397390, https://openalex.org/W2570685808, https://openalex.org/W2103328396, https://openalex.org/W2603766943, https://openalex.org/W2964153729, https://openalex.org/W1945616565, https://openalex.org/W2271840356, https://openalex.org/W2137135057, https://openalex.org/W3118608800, https://openalex.org/W2551835155, https://openalex.org/W2108677974, https://openalex.org/W2408141691, https://openalex.org/W2427628320, https://openalex.org/W2160815625, https://openalex.org/W2516574342, https://openalex.org/W2612637113, https://openalex.org/W1966948031, https://openalex.org/W2149991584, https://openalex.org/W2460937040, https://openalex.org/W2148319469, https://openalex.org/W2963826681, https://openalex.org/W2951308445, https://openalex.org/W2728139190, https://openalex.org/W2951985269, https://openalex.org/W2964135722, https://openalex.org/W2154579312, https://openalex.org/W2810611310 |
| referenced_works_count | 36 |
| abstract_inverted_index.GP | 95 |
| abstract_inverted_index.In | 89 |
| abstract_inverted_index.as | 36, 82, 84, 152 |
| abstract_inverted_index.do | 21, 41, 61, 79 |
| abstract_inverted_index.in | 32, 68, 132 |
| abstract_inverted_index.of | 11, 103, 112 |
| abstract_inverted_index.on | 15, 52, 86, 101 |
| abstract_inverted_index.to | 122, 127, 144 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.GPs | 73, 114 |
| abstract_inverted_index.RBF | 50 |
| abstract_inverted_index.and | 8, 40, 60, 78, 105, 115, 117, 130 |
| abstract_inverted_index.are | 9, 118, 149 |
| abstract_inverted_index.art | 13 |
| abstract_inverted_index.far | 65 |
| abstract_inverted_index.not | 22, 42, 62, 80 |
| abstract_inverted_index.own | 25 |
| abstract_inverted_index.the | 12, 33, 53, 109 |
| abstract_inverted_index.top | 102 |
| abstract_inverted_index.(GPs | 100 |
| abstract_inverted_index.DNNs | 85, 104, 116 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.When | 125 |
| abstract_inverted_index.both | 113 |
| abstract_inverted_index.data | 67 |
| abstract_inverted_index.deep | 97, 153 |
| abstract_inverted_index.from | 66 |
| abstract_inverted_index.hand | 55 |
| abstract_inverted_index.have | 4, 56, 74 |
| abstract_inverted_index.high | 139 |
| abstract_inverted_index.know | 156 |
| abstract_inverted_index.less | 30 |
| abstract_inverted_index.many | 16 |
| abstract_inverted_index.more | 120 |
| abstract_inverted_index.much | 119 |
| abstract_inverted_index.nice | 110 |
| abstract_inverted_index.poor | 75 |
| abstract_inverted_index.real | 34 |
| abstract_inverted_index.set. | 71 |
| abstract_inverted_index.show | 93 |
| abstract_inverted_index.that | 94, 155 |
| abstract_inverted_index.them | 29 |
| abstract_inverted_index.they | 19, 37, 158 |
| abstract_inverted_index.this | 90 |
| abstract_inverted_index.well | 27, 83 |
| abstract_inverted_index.when | 157 |
| abstract_inverted_index.with | 49 |
| abstract_inverted_index.(GPs) | 48 |
| abstract_inverted_index.class | 141 |
| abstract_inverted_index.don't | 159 |
| abstract_inverted_index.know. | 160 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.other | 54 |
| abstract_inverted_index.paper | 91 |
| abstract_inverted_index.power | 7, 77 |
| abstract_inverted_index.shift | 134 |
| abstract_inverted_index.state | 10 |
| abstract_inverted_index.their | 24, 69 |
| abstract_inverted_index.world | 35 |
| abstract_inverted_index."don't | 146 |
| abstract_inverted_index.(DNNs) | 3 |
| abstract_inverted_index.GPDNNs | 136, 148 |
| abstract_inverted_index.better | 57 |
| abstract_inverted_index.domain | 44, 133 |
| abstract_inverted_index.hybrid | 96 |
| abstract_inverted_index.know". | 147 |
| abstract_inverted_index.making | 28 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.notice | 43 |
| abstract_inverted_index.output | 138 |
| abstract_inverted_index.robust | 31, 121 |
| abstract_inverted_index.shift. | 45 |
| abstract_inverted_index.tasks. | 17 |
| abstract_inverted_index.GPDNNs, | 99 |
| abstract_inverted_index.capture | 23 |
| abstract_inverted_index.complex | 87 |
| abstract_inverted_index.entropy | 140 |
| abstract_inverted_index.inherit | 108 |
| abstract_inverted_index.kernels | 51 |
| abstract_inverted_index.perform | 81 |
| abstract_inverted_index.testing | 131 |
| abstract_inverted_index.trained | 106 |
| abstract_inverted_index.Gaussian | 46 |
| abstract_inverted_index.However, | 18, 72 |
| abstract_inverted_index.domains. | 88 |
| abstract_inverted_index.examples | 129 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.training | 70 |
| abstract_inverted_index.examples. | 124 |
| abstract_inverted_index.excellent | 5 |
| abstract_inverted_index.networks, | 98 |
| abstract_inverted_index.processes | 47 |
| abstract_inverted_index.promising | 151 |
| abstract_inverted_index.settings, | 135 |
| abstract_inverted_index.therefore | 150 |
| abstract_inverted_index.calibrated | 58 |
| abstract_inverted_index.frequently | 137 |
| abstract_inverted_index.properties | 111 |
| abstract_inverted_index.adversarial | 123, 128 |
| abstract_inverted_index.classifiers | 14 |
| abstract_inverted_index.end-to-end) | 107 |
| abstract_inverted_index.essentially | 145 |
| abstract_inverted_index.extrapolate | 39, 64 |
| abstract_inverted_index.architectures | 154 |
| abstract_inverted_index.corresponding | 143 |
| abstract_inverted_index.extrapolating | 126 |
| abstract_inverted_index.probabilities | 142 |
| abstract_inverted_index.uncertainties | 26, 59 |
| abstract_inverted_index.representative | 6 |
| abstract_inverted_index.overconfidently | 38, 63 |
| abstract_inverted_index.representational | 76 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |