Adversarial Generation of Continuous Implicit Shape Representations Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2002.00349
This work presents a generative adversarial architecture for generating three-dimensional shapes based on signed distance representations. While the deep generation of shapes has been mostly tackled by voxel and surface point cloud approaches, our generator learns to approximate the signed distance for any point in space given prior latent information. Although structurally similar to generative point cloud approaches, this formulation can be evaluated with arbitrary point density during inference, leading to fine-grained details in generated outputs. Furthermore, we study the effects of using either progressively growing voxel- or point-processing networks as discriminators, and propose a refinement scheme to strengthen the generator's capabilities in modeling the zero iso-surface decision boundary of shapes. We train our approach on the ShapeNet benchmark dataset and validate, both quantitatively and qualitatively, its performance in generating realistic 3D shapes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2002.00349
- https://arxiv.org/pdf/2002.00349
- OA Status
- green
- Cited By
- 26
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3004148804
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3004148804Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2002.00349Digital Object Identifier
- Title
-
Adversarial Generation of Continuous Implicit Shape RepresentationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-02-02Full publication date if available
- Authors
-
Marian Kleineberg, Matthias Fey, Frank WeichertList of authors in order
- Landing page
-
https://arxiv.org/abs/2002.00349Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2002.00349Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2002.00349Direct OA link when available
- Concepts
-
Adversarial system, Computer science, Artificial intelligence, Mathematical economics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
26Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 10, 2022: 5, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3004148804 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2002.00349 |
| ids.doi | https://doi.org/10.48550/arxiv.2002.00349 |
| ids.mag | 3004148804 |
| ids.openalex | https://openalex.org/W3004148804 |
| fwci | |
| type | preprint |
| title | Adversarial Generation of Continuous Implicit Shape Representations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T10481 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1704 |
| topics[1].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[1].display_name | Computer Graphics and Visualization Techniques |
| topics[2].id | https://openalex.org/T14339 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Processing and 3D Reconstruction |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8724802732467651 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4859529733657837 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3671581745147705 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C144237770 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3231942355632782 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[3].display_name | Mathematical economics |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2984762191772461 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.8724802732467651 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4859529733657837 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3671581745147705 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/mathematical-economics |
| keywords[3].score | 0.3231942355632782 |
| keywords[3].display_name | Mathematical economics |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.2984762191772461 |
| keywords[4].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2002.00349 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2002.00349 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2002.00349 |
| locations[1].id | doi:10.48550/arxiv.2002.00349 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2002.00349 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076184582 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Marian Kleineberg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marian Kleineberg |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002742256 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5727-0701 |
| authorships[1].author.display_name | Matthias Fey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matthias Fey |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004108638 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2530-8197 |
| authorships[2].author.display_name | Frank Weichert |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Frank Weichert |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2002.00349 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adversarial Generation of Continuous Implicit Shape Representations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2502115930, https://openalex.org/W2482350142, https://openalex.org/W4246396837, https://openalex.org/W3126451824, https://openalex.org/W1561927205, https://openalex.org/W3191453585, https://openalex.org/W4297672492, https://openalex.org/W4288019534 |
| cited_by_count | 26 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2002.00349 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2002.00349 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2002.00349 |
| primary_location.id | pmh:oai:arXiv.org:2002.00349 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2002.00349 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2002.00349 |
| publication_date | 2020-02-02 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2603429625, https://openalex.org/W3034259269, https://openalex.org/W2560609797, https://openalex.org/W2962885944, https://openalex.org/W2891396148, https://openalex.org/W2962760235, https://openalex.org/W2985840885, https://openalex.org/W2930206194, https://openalex.org/W2982006683, https://openalex.org/W2768308213, https://openalex.org/W2229412420, https://openalex.org/W2910792243, https://openalex.org/W2546066744, https://openalex.org/W2796312544, https://openalex.org/W2963926543, https://openalex.org/W2559882727, https://openalex.org/W1992642990, https://openalex.org/W2962879692, https://openalex.org/W1993244675, https://openalex.org/W2928999112, https://openalex.org/W2099471712, https://openalex.org/W2951357726, https://openalex.org/W2962849139, https://openalex.org/W2963627347, https://openalex.org/W2963121255, https://openalex.org/W2173520492, https://openalex.org/W2798670728 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 3, 94 |
| abstract_inverted_index.3D | 131 |
| abstract_inverted_index.We | 111 |
| abstract_inverted_index.as | 90 |
| abstract_inverted_index.be | 61 |
| abstract_inverted_index.by | 26 |
| abstract_inverted_index.in | 44, 73, 102, 128 |
| abstract_inverted_index.of | 20, 81, 109 |
| abstract_inverted_index.on | 12, 115 |
| abstract_inverted_index.or | 87 |
| abstract_inverted_index.to | 36, 53, 70, 97 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index.and | 28, 92, 120, 124 |
| abstract_inverted_index.any | 42 |
| abstract_inverted_index.can | 60 |
| abstract_inverted_index.for | 7, 41 |
| abstract_inverted_index.has | 22 |
| abstract_inverted_index.its | 126 |
| abstract_inverted_index.our | 33, 113 |
| abstract_inverted_index.the | 17, 38, 79, 99, 104, 116 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.been | 23 |
| abstract_inverted_index.both | 122 |
| abstract_inverted_index.deep | 18 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.with | 63 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.zero | 105 |
| abstract_inverted_index.While | 16 |
| abstract_inverted_index.based | 11 |
| abstract_inverted_index.cloud | 31, 56 |
| abstract_inverted_index.given | 46 |
| abstract_inverted_index.point | 30, 43, 55, 65 |
| abstract_inverted_index.prior | 47 |
| abstract_inverted_index.space | 45 |
| abstract_inverted_index.study | 78 |
| abstract_inverted_index.train | 112 |
| abstract_inverted_index.using | 82 |
| abstract_inverted_index.voxel | 27 |
| abstract_inverted_index.during | 67 |
| abstract_inverted_index.either | 83 |
| abstract_inverted_index.latent | 48 |
| abstract_inverted_index.learns | 35 |
| abstract_inverted_index.mostly | 24 |
| abstract_inverted_index.scheme | 96 |
| abstract_inverted_index.shapes | 10, 21 |
| abstract_inverted_index.signed | 13, 39 |
| abstract_inverted_index.voxel- | 86 |
| abstract_inverted_index.dataset | 119 |
| abstract_inverted_index.density | 66 |
| abstract_inverted_index.details | 72 |
| abstract_inverted_index.effects | 80 |
| abstract_inverted_index.growing | 85 |
| abstract_inverted_index.leading | 69 |
| abstract_inverted_index.propose | 93 |
| abstract_inverted_index.shapes. | 110, 132 |
| abstract_inverted_index.similar | 52 |
| abstract_inverted_index.surface | 29 |
| abstract_inverted_index.tackled | 25 |
| abstract_inverted_index.Although | 50 |
| abstract_inverted_index.ShapeNet | 117 |
| abstract_inverted_index.approach | 114 |
| abstract_inverted_index.boundary | 108 |
| abstract_inverted_index.decision | 107 |
| abstract_inverted_index.distance | 14, 40 |
| abstract_inverted_index.modeling | 103 |
| abstract_inverted_index.networks | 89 |
| abstract_inverted_index.outputs. | 75 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.arbitrary | 64 |
| abstract_inverted_index.benchmark | 118 |
| abstract_inverted_index.evaluated | 62 |
| abstract_inverted_index.generated | 74 |
| abstract_inverted_index.generator | 34 |
| abstract_inverted_index.realistic | 130 |
| abstract_inverted_index.validate, | 121 |
| abstract_inverted_index.generating | 8, 129 |
| abstract_inverted_index.generation | 19 |
| abstract_inverted_index.generative | 4, 54 |
| abstract_inverted_index.inference, | 68 |
| abstract_inverted_index.refinement | 95 |
| abstract_inverted_index.strengthen | 98 |
| abstract_inverted_index.adversarial | 5 |
| abstract_inverted_index.approaches, | 32, 57 |
| abstract_inverted_index.approximate | 37 |
| abstract_inverted_index.formulation | 59 |
| abstract_inverted_index.generator's | 100 |
| abstract_inverted_index.iso-surface | 106 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.Furthermore, | 76 |
| abstract_inverted_index.architecture | 6 |
| abstract_inverted_index.capabilities | 101 |
| abstract_inverted_index.fine-grained | 71 |
| abstract_inverted_index.information. | 49 |
| abstract_inverted_index.structurally | 51 |
| abstract_inverted_index.progressively | 84 |
| abstract_inverted_index.qualitatively, | 125 |
| abstract_inverted_index.quantitatively | 123 |
| abstract_inverted_index.discriminators, | 91 |
| abstract_inverted_index.point-processing | 88 |
| abstract_inverted_index.representations. | 15 |
| abstract_inverted_index.three-dimensional | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |