Adversarial Machine Learning in Cybersecurity: Attacks and Defenses Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.53469/ijomsr.2025.08(02).04
Adversarial Machine Learning (AML) refers to the research field that involves testing and improving machine learning models by introducing adversarial samples or attack techniques. In the cybersecurity domain, AML has significant potential to help identify and defend against threats such as malware, cyber attacks, and identity fraud. However, AML also faces numerous challenges, including low efficiency in generating adversarial samples, insufficient stealth, and issues with the generality and adaptability of defense methods. There is a dynamic interplay between adversarial attacks and defenses, with attackers continually developing new techniques and defenders needing to constantly improve their defense strategies. This interaction drives the rapid development of AML technology, making it increasingly important in cybersecurity. By deeply studying the interplay between adversarial attacks and defenses, the robustness and reliability of cybersecurity systems can be effectively enhanced, laying the foundation for future AI development in cybersecurity.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.53469/ijomsr.2025.08(02).04
- OA Status
- diamond
- Cited By
- 5
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408125942
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408125942Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.53469/ijomsr.2025.08(02).04Digital Object Identifier
- Title
-
Adversarial Machine Learning in Cybersecurity: Attacks and DefensesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-17Full publication date if available
- Authors
-
Ke Hu, Jian Xu, Yong Wang, Heyao Chen, Zepeng ShenList of authors in order
- Landing page
-
https://doi.org/10.53469/ijomsr.2025.08(02).04Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.53469/ijomsr.2025.08(02).04Direct OA link when available
- Concepts
-
Adversarial system, Computer security, Adversarial machine learning, Computer science, Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408125942 |
|---|---|
| doi | https://doi.org/10.53469/ijomsr.2025.08(02).04 |
| ids.doi | https://doi.org/10.53469/ijomsr.2025.08(02).04 |
| ids.openalex | https://openalex.org/W4408125942 |
| fwci | 24.09872573 |
| type | article |
| title | Adversarial Machine Learning in Cybersecurity: Attacks and Defenses |
| biblio.issue | 2 |
| biblio.volume | 8 |
| biblio.last_page | 33 |
| biblio.first_page | 26 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.984000027179718 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9211999773979187 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7913236618041992 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C38652104 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7664993405342102 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[1].display_name | Computer security |
| concepts[2].id | https://openalex.org/C2778403875 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6483730673789978 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q20312394 |
| concepts[2].display_name | Adversarial machine learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5667134523391724 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3875610828399658 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3253980875015259 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.7913236618041992 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/computer-security |
| keywords[1].score | 0.7664993405342102 |
| keywords[1].display_name | Computer security |
| keywords[2].id | https://openalex.org/keywords/adversarial-machine-learning |
| keywords[2].score | 0.6483730673789978 |
| keywords[2].display_name | Adversarial machine learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5667134523391724 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3875610828399658 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.3253980875015259 |
| keywords[5].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.53469/ijomsr.2025.08(02).04 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4389157559 |
| locations[0].source.issn | 2536-605X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2536-605X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Management Science Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Management Science Research |
| locations[0].landing_page_url | https://doi.org/10.53469/ijomsr.2025.08(02).04 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5029338576 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1599-1519 |
| authorships[0].author.display_name | Ke Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hu Ke |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085728168 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5590-8540 |
| authorships[1].author.display_name | Jian Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jian Xu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100766315 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0578-8023 |
| authorships[2].author.display_name | Yong Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yong Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024183123 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Heyao Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Heyao Chen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101293821 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zepeng Shen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zepeng Shen |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.53469/ijomsr.2025.08(02).04 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adversarial Machine Learning in Cybersecurity: Attacks and Defenses |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.984000027179718 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W3048732067, https://openalex.org/W4383468834, https://openalex.org/W2961085424, https://openalex.org/W4283221438, https://openalex.org/W2900159906, https://openalex.org/W4384648009, https://openalex.org/W4306674287, https://openalex.org/W4287828318, https://openalex.org/W2406556600, https://openalex.org/W4380352238 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.53469/ijomsr.2025.08(02).04 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4389157559 |
| best_oa_location.source.issn | 2536-605X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2536-605X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Management Science Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Management Science Research |
| best_oa_location.landing_page_url | https://doi.org/10.53469/ijomsr.2025.08(02).04 |
| primary_location.id | doi:10.53469/ijomsr.2025.08(02).04 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4389157559 |
| primary_location.source.issn | 2536-605X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2536-605X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Management Science Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Management Science Research |
| primary_location.landing_page_url | https://doi.org/10.53469/ijomsr.2025.08(02).04 |
| publication_date | 2025-02-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4391005006, https://openalex.org/W4406103438, https://openalex.org/W4391755797, https://openalex.org/W4397031982, https://openalex.org/W4377968931 |
| referenced_works_count | 5 |
| abstract_inverted_index.a | 74 |
| abstract_inverted_index.AI | 138 |
| abstract_inverted_index.By | 112 |
| abstract_inverted_index.In | 24 |
| abstract_inverted_index.as | 40 |
| abstract_inverted_index.be | 130 |
| abstract_inverted_index.by | 17 |
| abstract_inverted_index.in | 56, 110, 140 |
| abstract_inverted_index.is | 73 |
| abstract_inverted_index.it | 107 |
| abstract_inverted_index.of | 69, 103, 126 |
| abstract_inverted_index.or | 21 |
| abstract_inverted_index.to | 5, 32, 91 |
| abstract_inverted_index.AML | 28, 48, 104 |
| abstract_inverted_index.and | 12, 35, 44, 62, 67, 80, 88, 120, 124 |
| abstract_inverted_index.can | 129 |
| abstract_inverted_index.for | 136 |
| abstract_inverted_index.has | 29 |
| abstract_inverted_index.low | 54 |
| abstract_inverted_index.new | 86 |
| abstract_inverted_index.the | 6, 25, 65, 100, 115, 122, 134 |
| abstract_inverted_index.This | 97 |
| abstract_inverted_index.also | 49 |
| abstract_inverted_index.help | 33 |
| abstract_inverted_index.such | 39 |
| abstract_inverted_index.that | 9 |
| abstract_inverted_index.with | 64, 82 |
| abstract_inverted_index.(AML) | 3 |
| abstract_inverted_index.There | 72 |
| abstract_inverted_index.cyber | 42 |
| abstract_inverted_index.faces | 50 |
| abstract_inverted_index.field | 8 |
| abstract_inverted_index.rapid | 101 |
| abstract_inverted_index.their | 94 |
| abstract_inverted_index.attack | 22 |
| abstract_inverted_index.deeply | 113 |
| abstract_inverted_index.defend | 36 |
| abstract_inverted_index.drives | 99 |
| abstract_inverted_index.fraud. | 46 |
| abstract_inverted_index.future | 137 |
| abstract_inverted_index.issues | 63 |
| abstract_inverted_index.laying | 133 |
| abstract_inverted_index.making | 106 |
| abstract_inverted_index.models | 16 |
| abstract_inverted_index.refers | 4 |
| abstract_inverted_index.Machine | 1 |
| abstract_inverted_index.against | 37 |
| abstract_inverted_index.attacks | 79, 119 |
| abstract_inverted_index.between | 77, 117 |
| abstract_inverted_index.defense | 70, 95 |
| abstract_inverted_index.domain, | 27 |
| abstract_inverted_index.dynamic | 75 |
| abstract_inverted_index.improve | 93 |
| abstract_inverted_index.machine | 14 |
| abstract_inverted_index.needing | 90 |
| abstract_inverted_index.samples | 20 |
| abstract_inverted_index.systems | 128 |
| abstract_inverted_index.testing | 11 |
| abstract_inverted_index.threats | 38 |
| abstract_inverted_index.However, | 47 |
| abstract_inverted_index.Learning | 2 |
| abstract_inverted_index.attacks, | 43 |
| abstract_inverted_index.identify | 34 |
| abstract_inverted_index.identity | 45 |
| abstract_inverted_index.involves | 10 |
| abstract_inverted_index.learning | 15 |
| abstract_inverted_index.malware, | 41 |
| abstract_inverted_index.methods. | 71 |
| abstract_inverted_index.numerous | 51 |
| abstract_inverted_index.research | 7 |
| abstract_inverted_index.samples, | 59 |
| abstract_inverted_index.stealth, | 61 |
| abstract_inverted_index.studying | 114 |
| abstract_inverted_index.attackers | 83 |
| abstract_inverted_index.defenders | 89 |
| abstract_inverted_index.defenses, | 81, 121 |
| abstract_inverted_index.enhanced, | 132 |
| abstract_inverted_index.important | 109 |
| abstract_inverted_index.improving | 13 |
| abstract_inverted_index.including | 53 |
| abstract_inverted_index.interplay | 76, 116 |
| abstract_inverted_index.potential | 31 |
| abstract_inverted_index.constantly | 92 |
| abstract_inverted_index.developing | 85 |
| abstract_inverted_index.efficiency | 55 |
| abstract_inverted_index.foundation | 135 |
| abstract_inverted_index.generality | 66 |
| abstract_inverted_index.generating | 57 |
| abstract_inverted_index.robustness | 123 |
| abstract_inverted_index.techniques | 87 |
| abstract_inverted_index.Adversarial | 0 |
| abstract_inverted_index.adversarial | 19, 58, 78, 118 |
| abstract_inverted_index.challenges, | 52 |
| abstract_inverted_index.continually | 84 |
| abstract_inverted_index.development | 102, 139 |
| abstract_inverted_index.effectively | 131 |
| abstract_inverted_index.interaction | 98 |
| abstract_inverted_index.introducing | 18 |
| abstract_inverted_index.reliability | 125 |
| abstract_inverted_index.significant | 30 |
| abstract_inverted_index.strategies. | 96 |
| abstract_inverted_index.techniques. | 23 |
| abstract_inverted_index.technology, | 105 |
| abstract_inverted_index.adaptability | 68 |
| abstract_inverted_index.increasingly | 108 |
| abstract_inverted_index.insufficient | 60 |
| abstract_inverted_index.cybersecurity | 26, 127 |
| abstract_inverted_index.cybersecurity. | 111, 141 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.99219778 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |