Adversarial Transferability in Embedded Sensor Systems: An Activity Recognition Perspective Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3641861
Machine learning algorithms are increasingly used for inference and decision-making in embedded systems. Data from sensors are used to train machine learning models for various smart functions of embedded and cyber-physical systems ranging from applications in healthcare, autonomous vehicles, and national security. However, recent studies have shown that machine learning models can be fooled by adding adversarial noise to their inputs. The perturbed inputs are called adversarial examples. Furthermore, adversarial examples designed to fool one machine learning system are also often effective against another system. This property of adversarial examples is called adversarial transferability and has not been explored in wearable systems to date. In this work, we take the first stride in studying adversarial transferability in wearable sensor systems from four viewpoints: (1) transferability between machine learning models; (2) transferability across users/subjects of the embedded system; (3) transferability across sensor body locations; and (4) transferability across datasets used for model training. We present a set of carefully designed experiments to investigate these transferability scenarios. We also propose a threat model describing the interactions of an adversary with the source and target sensor systems in different transferability settings. In most cases, we found high untargeted transferability, whereas targeted transferability success scores varied from 0% to 80%. The transferability of adversarial examples depends on many factors such as the inclusion of data from all subjects, sensor body position, number of samples in the dataset, type of learning algorithm, and the distribution of source and target system dataset. The transferability of adversarial examples decreased sharply when the data distribution of the source and target system became more distinct. We also provide guidelines and suggestions for the community for designing robust sensor systems. Code and dataset used in our analysis is publicly available here. 1
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3641861
- https://dl.acm.org/doi/pdf/10.1145/3641861
- OA Status
- hybrid
- Cited By
- 2
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391103909
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391103909Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3641861Digital Object Identifier
- Title
-
Adversarial Transferability in Embedded Sensor Systems: An Activity Recognition PerspectiveWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-22Full publication date if available
- Authors
-
Ramesh Kumar Sah, Hassan GhasemzadehList of authors in order
- Landing page
-
https://doi.org/10.1145/3641861Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3641861Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3641861Direct OA link when available
- Concepts
-
Transferability, Computer science, Adversarial system, Wearable computer, Machine learning, Artificial intelligence, Embedded system, LogitTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391103909 |
|---|---|
| doi | https://doi.org/10.1145/3641861 |
| ids.doi | https://doi.org/10.1145/3641861 |
| ids.openalex | https://openalex.org/W4391103909 |
| fwci | 1.2775571 |
| type | article |
| title | Adversarial Transferability in Embedded Sensor Systems: An Activity Recognition Perspective |
| biblio.issue | 2 |
| biblio.volume | 23 |
| biblio.last_page | 31 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9837999939918518 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61272859 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8112403154373169 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7834031 |
| concepts[0].display_name | Transferability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7995809316635132 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C37736160 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7809051871299744 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[2].display_name | Adversarial system |
| concepts[3].id | https://openalex.org/C150594956 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6496888399124146 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[3].display_name | Wearable computer |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6273868680000305 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5677903294563293 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C149635348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.10931956768035889 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[6].display_name | Embedded system |
| concepts[7].id | https://openalex.org/C140331021 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1868104 |
| concepts[7].display_name | Logit |
| keywords[0].id | https://openalex.org/keywords/transferability |
| keywords[0].score | 0.8112403154373169 |
| keywords[0].display_name | Transferability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7995809316635132 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/adversarial-system |
| keywords[2].score | 0.7809051871299744 |
| keywords[2].display_name | Adversarial system |
| keywords[3].id | https://openalex.org/keywords/wearable-computer |
| keywords[3].score | 0.6496888399124146 |
| keywords[3].display_name | Wearable computer |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6273868680000305 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5677903294563293 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/embedded-system |
| keywords[6].score | 0.10931956768035889 |
| keywords[6].display_name | Embedded system |
| language | en |
| locations[0].id | doi:10.1145/3641861 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S136160450 |
| locations[0].source.issn | 1539-9087, 1558-3465 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1539-9087 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Transactions on Embedded Computing Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | public-domain |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3641861 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Transactions on Embedded Computing Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3641861 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5060369486 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3051-0402 |
| authorships[0].author.display_name | Ramesh Kumar Sah |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I72951846 |
| authorships[0].affiliations[0].raw_affiliation_string | Washington State University, Pullman, United States |
| authorships[0].institutions[0].id | https://openalex.org/I72951846 |
| authorships[0].institutions[0].ror | https://ror.org/05dk0ce17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I72951846 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Washington State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ramesh Kumar Sah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Washington State University, Pullman, United States |
| authorships[1].author.id | https://openalex.org/A5007139473 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1844-1416 |
| authorships[1].author.display_name | Hassan Ghasemzadeh |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[1].affiliations[0].raw_affiliation_string | Arizona State University, Tempe, United States |
| authorships[1].institutions[0].id | https://openalex.org/I55732556 |
| authorships[1].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Arizona State University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hassan Ghasemzadeh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Arizona State University, Tempe, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3641861 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adversarial Transferability in Embedded Sensor Systems: An Activity Recognition Perspective |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4288055406, https://openalex.org/W3137894200, https://openalex.org/W3092178728, https://openalex.org/W4226402597, https://openalex.org/W4200630034, https://openalex.org/W3132910851, https://openalex.org/W4377864639, https://openalex.org/W2997056298, https://openalex.org/W2950864148, https://openalex.org/W2570685808 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3641861 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S136160450 |
| best_oa_location.source.issn | 1539-9087, 1558-3465 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1539-9087 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Transactions on Embedded Computing Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3641861 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Transactions on Embedded Computing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3641861 |
| primary_location.id | doi:10.1145/3641861 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S136160450 |
| primary_location.source.issn | 1539-9087, 1558-3465 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1539-9087 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Transactions on Embedded Computing Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | public-domain |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3641861 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Transactions on Embedded Computing Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3641861 |
| publication_date | 2024-01-22 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2140944144, https://openalex.org/W1852728451, https://openalex.org/W2747237166, https://openalex.org/W3103836116, https://openalex.org/W2963857521, https://openalex.org/W2774644650, https://openalex.org/W2966764754, https://openalex.org/W2798801120, https://openalex.org/W4246354968, https://openalex.org/W2963542245, https://openalex.org/W2054780155, https://openalex.org/W3007679772, https://openalex.org/W2159613676, https://openalex.org/W2947821610, https://openalex.org/W2898783128, https://openalex.org/W2603766943, https://openalex.org/W2180612164, https://openalex.org/W2997591727, https://openalex.org/W1980110527, https://openalex.org/W2049043413, https://openalex.org/W2963178695, https://openalex.org/W2001058334, https://openalex.org/W4229487452, https://openalex.org/W4300837091, https://openalex.org/W9657784, https://openalex.org/W4300445019, https://openalex.org/W4297309777, https://openalex.org/W2613019972, https://openalex.org/W2963062382, https://openalex.org/W2472350142 |
| referenced_works_count | 30 |
| abstract_inverted_index.1 | 291 |
| abstract_inverted_index.a | 154, 168 |
| abstract_inverted_index.0% | 203 |
| abstract_inverted_index.In | 104, 188 |
| abstract_inverted_index.We | 152, 165, 266 |
| abstract_inverted_index.an | 175 |
| abstract_inverted_index.as | 216 |
| abstract_inverted_index.be | 52 |
| abstract_inverted_index.by | 54 |
| abstract_inverted_index.in | 10, 35, 99, 112, 116, 184, 230, 284 |
| abstract_inverted_index.is | 90, 287 |
| abstract_inverted_index.of | 27, 87, 133, 156, 174, 208, 219, 228, 234, 240, 248, 257 |
| abstract_inverted_index.on | 212 |
| abstract_inverted_index.to | 18, 58, 72, 102, 160, 204 |
| abstract_inverted_index.we | 107, 191 |
| abstract_inverted_index.(1) | 123 |
| abstract_inverted_index.(2) | 129 |
| abstract_inverted_index.(3) | 137 |
| abstract_inverted_index.(4) | 144 |
| abstract_inverted_index.The | 61, 206, 246 |
| abstract_inverted_index.all | 222 |
| abstract_inverted_index.and | 8, 29, 39, 94, 143, 180, 237, 242, 260, 270, 281 |
| abstract_inverted_index.are | 3, 16, 64, 78 |
| abstract_inverted_index.can | 51 |
| abstract_inverted_index.for | 6, 23, 149, 272, 275 |
| abstract_inverted_index.has | 95 |
| abstract_inverted_index.not | 96 |
| abstract_inverted_index.one | 74 |
| abstract_inverted_index.our | 285 |
| abstract_inverted_index.set | 155 |
| abstract_inverted_index.the | 109, 134, 172, 178, 217, 231, 238, 254, 258, 273 |
| abstract_inverted_index.80%. | 205 |
| abstract_inverted_index.Code | 280 |
| abstract_inverted_index.Data | 13 |
| abstract_inverted_index.This | 85 |
| abstract_inverted_index.also | 79, 166, 267 |
| abstract_inverted_index.been | 97 |
| abstract_inverted_index.body | 141, 225 |
| abstract_inverted_index.data | 220, 255 |
| abstract_inverted_index.fool | 73 |
| abstract_inverted_index.four | 121 |
| abstract_inverted_index.from | 14, 33, 120, 202, 221 |
| abstract_inverted_index.have | 45 |
| abstract_inverted_index.high | 193 |
| abstract_inverted_index.many | 213 |
| abstract_inverted_index.more | 264 |
| abstract_inverted_index.most | 189 |
| abstract_inverted_index.such | 215 |
| abstract_inverted_index.take | 108 |
| abstract_inverted_index.that | 47 |
| abstract_inverted_index.this | 105 |
| abstract_inverted_index.type | 233 |
| abstract_inverted_index.used | 5, 17, 148, 283 |
| abstract_inverted_index.when | 253 |
| abstract_inverted_index.with | 177 |
| abstract_inverted_index.date. | 103 |
| abstract_inverted_index.first | 110 |
| abstract_inverted_index.found | 192 |
| abstract_inverted_index.here. | 290 |
| abstract_inverted_index.model | 150, 170 |
| abstract_inverted_index.noise | 57 |
| abstract_inverted_index.often | 80 |
| abstract_inverted_index.shown | 46 |
| abstract_inverted_index.smart | 25 |
| abstract_inverted_index.their | 59 |
| abstract_inverted_index.these | 162 |
| abstract_inverted_index.train | 19 |
| abstract_inverted_index.work, | 106 |
| abstract_inverted_index.across | 131, 139, 146 |
| abstract_inverted_index.adding | 55 |
| abstract_inverted_index.became | 263 |
| abstract_inverted_index.called | 65, 91 |
| abstract_inverted_index.cases, | 190 |
| abstract_inverted_index.fooled | 53 |
| abstract_inverted_index.inputs | 63 |
| abstract_inverted_index.models | 22, 50 |
| abstract_inverted_index.number | 227 |
| abstract_inverted_index.recent | 43 |
| abstract_inverted_index.robust | 277 |
| abstract_inverted_index.scores | 200 |
| abstract_inverted_index.sensor | 118, 140, 182, 224, 278 |
| abstract_inverted_index.source | 179, 241, 259 |
| abstract_inverted_index.stride | 111 |
| abstract_inverted_index.system | 77, 244, 262 |
| abstract_inverted_index.target | 181, 243, 261 |
| abstract_inverted_index.threat | 169 |
| abstract_inverted_index.varied | 201 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.against | 82 |
| abstract_inverted_index.another | 83 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.dataset | 282 |
| abstract_inverted_index.depends | 211 |
| abstract_inverted_index.factors | 214 |
| abstract_inverted_index.inputs. | 60 |
| abstract_inverted_index.machine | 20, 48, 75, 126 |
| abstract_inverted_index.models; | 128 |
| abstract_inverted_index.present | 153 |
| abstract_inverted_index.propose | 167 |
| abstract_inverted_index.provide | 268 |
| abstract_inverted_index.ranging | 32 |
| abstract_inverted_index.samples | 229 |
| abstract_inverted_index.sensors | 15 |
| abstract_inverted_index.sharply | 252 |
| abstract_inverted_index.studies | 44 |
| abstract_inverted_index.success | 199 |
| abstract_inverted_index.system. | 84 |
| abstract_inverted_index.system; | 136 |
| abstract_inverted_index.systems | 31, 101, 119, 183 |
| abstract_inverted_index.various | 24 |
| abstract_inverted_index.whereas | 196 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.analysis | 286 |
| abstract_inverted_index.dataset, | 232 |
| abstract_inverted_index.dataset. | 245 |
| abstract_inverted_index.datasets | 147 |
| abstract_inverted_index.designed | 71, 158 |
| abstract_inverted_index.embedded | 11, 28, 135 |
| abstract_inverted_index.examples | 70, 89, 210, 250 |
| abstract_inverted_index.explored | 98 |
| abstract_inverted_index.learning | 1, 21, 49, 76, 127, 235 |
| abstract_inverted_index.national | 40 |
| abstract_inverted_index.property | 86 |
| abstract_inverted_index.publicly | 288 |
| abstract_inverted_index.studying | 113 |
| abstract_inverted_index.systems. | 12, 279 |
| abstract_inverted_index.targeted | 197 |
| abstract_inverted_index.wearable | 100, 117 |
| abstract_inverted_index.adversary | 176 |
| abstract_inverted_index.available | 289 |
| abstract_inverted_index.carefully | 157 |
| abstract_inverted_index.community | 274 |
| abstract_inverted_index.decreased | 251 |
| abstract_inverted_index.designing | 276 |
| abstract_inverted_index.different | 185 |
| abstract_inverted_index.distinct. | 265 |
| abstract_inverted_index.effective | 81 |
| abstract_inverted_index.examples. | 67 |
| abstract_inverted_index.functions | 26 |
| abstract_inverted_index.inclusion | 218 |
| abstract_inverted_index.inference | 7 |
| abstract_inverted_index.perturbed | 62 |
| abstract_inverted_index.position, | 226 |
| abstract_inverted_index.security. | 41 |
| abstract_inverted_index.settings. | 187 |
| abstract_inverted_index.subjects, | 223 |
| abstract_inverted_index.training. | 151 |
| abstract_inverted_index.vehicles, | 38 |
| abstract_inverted_index.algorithm, | 236 |
| abstract_inverted_index.algorithms | 2 |
| abstract_inverted_index.autonomous | 37 |
| abstract_inverted_index.describing | 171 |
| abstract_inverted_index.guidelines | 269 |
| abstract_inverted_index.locations; | 142 |
| abstract_inverted_index.scenarios. | 164 |
| abstract_inverted_index.untargeted | 194 |
| abstract_inverted_index.adversarial | 56, 66, 69, 88, 92, 114, 209, 249 |
| abstract_inverted_index.experiments | 159 |
| abstract_inverted_index.healthcare, | 36 |
| abstract_inverted_index.investigate | 161 |
| abstract_inverted_index.suggestions | 271 |
| abstract_inverted_index.viewpoints: | 122 |
| abstract_inverted_index.Furthermore, | 68 |
| abstract_inverted_index.applications | 34 |
| abstract_inverted_index.distribution | 239, 256 |
| abstract_inverted_index.increasingly | 4 |
| abstract_inverted_index.interactions | 173 |
| abstract_inverted_index.cyber-physical | 30 |
| abstract_inverted_index.users/subjects | 132 |
| abstract_inverted_index.decision-making | 9 |
| abstract_inverted_index.transferability | 93, 115, 124, 130, 138, 145, 163, 186, 198, 207, 247 |
| abstract_inverted_index.transferability, | 195 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.7631102 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |