Adversarially Trained Convolutional Neural Networks for Semantic Segmentation of Ischaemic Stroke Lesion using Multisequence Magnetic Resonance Imaging Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/embc.2019.8857527
Ischaemic stroke is a medical condition caused by occlusion of blood supply to the brain tissue thus forming a lesion. A lesion is zoned into a core associated with irreversible necrosis typically located at the center of the lesion, while reversible hypoxic changes in the outer regions of the lesion are termed as the penumbra. Early estimation of core and penumbra in ischaemic stroke is crucial for timely intervention with thrombolytic therapy to reverse the damage and restore normalcy. Multisequence magnetic resonance imaging (MRI) is commonly employed for clinical diagnosis. However, a sequence singly has not been found to be sufficiently able to differentiate between core and penumbra, while a combination of sequences is required to determine the extent of the damage. The challenge, however, is that with an increase in the number of sequences, it cognitively taxes the clinician to discover symptomatic biomarkers in these images. In this paper, we present a data-driven fully automated method for estimation of core and penumbra in ischaemic lesions using diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) sequence maps of MRI. The method employs recent developments in convolutional neural networks (CNN) for semantic segmentation in medical images. In the absence of availability of a large amount of labeled data, the CNN is trained using an adversarial approach employing cross-entropy as a segmentation loss along with losses aggregated from three discriminators of which two employ relativistic visual Turing test. This method is experimentally validated on the ISLES-2015 dataset through three-fold cross-validation to obtain with an average Dice score of 0.82 and 0.73 for segmentation of penumbra and core respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/embc.2019.8857527
- OA Status
- green
- Cited By
- 1
- References
- 17
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2966223777
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2966223777Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/embc.2019.8857527Digital Object Identifier
- Title
-
Adversarially Trained Convolutional Neural Networks for Semantic Segmentation of Ischaemic Stroke Lesion using Multisequence Magnetic Resonance ImagingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-07-01Full publication date if available
- Authors
-
Rachana Sathish, Ronnie Rajan, Anusha Vupputuri, Nirmalya Ghosh, Debdoot SheetList of authors in order
- Landing page
-
https://doi.org/10.1109/embc.2019.8857527Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1908.01176Direct OA link when available
- Concepts
-
Penumbra, Lesion, Convolutional neural network, Magnetic resonance imaging, Segmentation, Computer science, Artificial intelligence, Medicine, Radiology, Pattern recognition (psychology), Ischemia, Pathology, CardiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2019: 1Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2966223777 |
|---|---|
| doi | https://doi.org/10.1109/embc.2019.8857527 |
| ids.doi | https://doi.org/10.48550/arxiv.1908.01176 |
| ids.mag | 2966223777 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31946064 |
| ids.openalex | https://openalex.org/W2966223777 |
| fwci | 0.19627481 |
| mesh[0].qualifier_ui | Q000000981 |
| mesh[0].descriptor_ui | D002545 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | diagnostic imaging |
| mesh[0].descriptor_name | Brain Ischemia |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008279 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Magnetic Resonance Imaging |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D012660 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Semantics |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D020521 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Stroke |
| mesh[6].qualifier_ui | Q000000981 |
| mesh[6].descriptor_ui | D002545 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | diagnostic imaging |
| mesh[6].descriptor_name | Brain Ischemia |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008279 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Magnetic Resonance Imaging |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016571 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Neural Networks, Computer |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D012660 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Semantics |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D020521 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Stroke |
| type | preprint |
| title | Adversarially Trained Convolutional Neural Networks for Semantic Segmentation of Ischaemic Stroke Lesion using Multisequence Magnetic Resonance Imaging |
| biblio.issue | |
| biblio.volume | 2019 |
| biblio.last_page | 1013 |
| biblio.first_page | 1010 |
| topics[0].id | https://openalex.org/T10227 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Acute Ischemic Stroke Management |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9697999954223633 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9447000026702881 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780577055 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9645472764968872 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2069532 |
| concepts[0].display_name | Penumbra |
| concepts[1].id | https://openalex.org/C2781156865 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6088336706161499 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q827023 |
| concepts[1].display_name | Lesion |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6049603819847107 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C143409427 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6013125777244568 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[3].display_name | Magnetic resonance imaging |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5898919105529785 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5554642081260681 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5106812119483948 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4181097745895386 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37705111503601074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.35938477516174316 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C541997718 |
| concepts[10].level | 2 |
| concepts[10].score | 0.20791134238243103 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q188151 |
| concepts[10].display_name | Ischemia |
| concepts[11].id | https://openalex.org/C142724271 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1929919719696045 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[11].display_name | Pathology |
| concepts[12].id | https://openalex.org/C164705383 |
| concepts[12].level | 1 |
| concepts[12].score | 0.10173529386520386 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[12].display_name | Cardiology |
| keywords[0].id | https://openalex.org/keywords/penumbra |
| keywords[0].score | 0.9645472764968872 |
| keywords[0].display_name | Penumbra |
| keywords[1].id | https://openalex.org/keywords/lesion |
| keywords[1].score | 0.6088336706161499 |
| keywords[1].display_name | Lesion |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6049603819847107 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[3].score | 0.6013125777244568 |
| keywords[3].display_name | Magnetic resonance imaging |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5898919105529785 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5554642081260681 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5106812119483948 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.4181097745895386 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.37705111503601074 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.35938477516174316 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/ischemia |
| keywords[10].score | 0.20791134238243103 |
| keywords[10].display_name | Ischemia |
| keywords[11].id | https://openalex.org/keywords/pathology |
| keywords[11].score | 0.1929919719696045 |
| keywords[11].display_name | Pathology |
| keywords[12].id | https://openalex.org/keywords/cardiology |
| keywords[12].score | 0.10173529386520386 |
| keywords[12].display_name | Cardiology |
| language | en |
| locations[0].id | doi:10.1109/embc.2019.8857527 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
| locations[0].landing_page_url | https://doi.org/10.1109/embc.2019.8857527 |
| locations[1].id | pmid:31946064 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31946064 |
| locations[2].id | pmh:oai:arXiv.org:1908.01176 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | https://arxiv.org/pdf/1908.01176 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/1908.01176 |
| locations[3].id | mag:2966223777 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | arXiv (Cornell University) |
| locations[3].landing_page_url | http://export.arxiv.org/pdf/1908.01176 |
| locations[4].id | doi:10.48550/arxiv.1908.01176 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.48550/arxiv.1908.01176 |
| indexed_in | arxiv, crossref, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5102806062 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3402-3852 |
| authorships[0].author.display_name | Rachana Sathish |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145894827 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering Indian Institute of Technology Kharagpur -721302, India |
| authorships[0].institutions[0].id | https://openalex.org/I145894827 |
| authorships[0].institutions[0].ror | https://ror.org/03w5sq511 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145894827 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Kharagpur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rachana Sathish |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering Indian Institute of Technology Kharagpur -721302, India |
| authorships[1].author.id | https://openalex.org/A5058147522 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4982-0451 |
| authorships[1].author.display_name | Ronnie Rajan |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145894827 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, 721302. India. |
| authorships[1].institutions[0].id | https://openalex.org/I145894827 |
| authorships[1].institutions[0].ror | https://ror.org/03w5sq511 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145894827 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Kharagpur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ronnie Rajan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, 721302. India. |
| authorships[2].author.id | https://openalex.org/A5055317785 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8517-731X |
| authorships[2].author.display_name | Anusha Vupputuri |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145894827 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering Indian Institute of Technology Kharagpur -721302, India |
| authorships[2].institutions[0].id | https://openalex.org/I145894827 |
| authorships[2].institutions[0].ror | https://ror.org/03w5sq511 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145894827 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Kharagpur |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anusha Vupputuri |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering Indian Institute of Technology Kharagpur -721302, India |
| authorships[3].author.id | https://openalex.org/A5064240264 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8580-2541 |
| authorships[3].author.display_name | Nirmalya Ghosh |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145894827 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering Indian Institute of Technology Kharagpur -721302, India |
| authorships[3].institutions[0].id | https://openalex.org/I145894827 |
| authorships[3].institutions[0].ror | https://ror.org/03w5sq511 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145894827 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Technology Kharagpur |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nirmalya Ghosh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering Indian Institute of Technology Kharagpur -721302, India |
| authorships[4].author.id | https://openalex.org/A5010986022 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9046-149X |
| authorships[4].author.display_name | Debdoot Sheet |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145894827 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical Engineering Indian Institute of Technology Kharagpur -721302, India |
| authorships[4].institutions[0].id | https://openalex.org/I145894827 |
| authorships[4].institutions[0].ror | https://ror.org/03w5sq511 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145894827 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Indian Institute of Technology Kharagpur |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Debdoot Sheet |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical Engineering Indian Institute of Technology Kharagpur -721302, India |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1908.01176 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Adversarially Trained Convolutional Neural Networks for Semantic Segmentation of Ischaemic Stroke Lesion using Multisequence Magnetic Resonance Imaging |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10227 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Acute Ischemic Stroke Management |
| related_works | https://openalex.org/W2980316673, https://openalex.org/W3169911588, https://openalex.org/W3144870021, https://openalex.org/W2989569097, https://openalex.org/W2141188903, https://openalex.org/W3000921899, https://openalex.org/W2915364708, https://openalex.org/W2947077408, https://openalex.org/W3008060450, https://openalex.org/W2754216231, https://openalex.org/W3198627688, https://openalex.org/W3042519501, https://openalex.org/W3186295935, https://openalex.org/W2039036478, https://openalex.org/W2582728534, https://openalex.org/W2461360468, https://openalex.org/W3111513394, https://openalex.org/W3186134164, https://openalex.org/W1535700711, https://openalex.org/W3104877382 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2019 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:1908.01176 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1908.01176 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1908.01176 |
| primary_location.id | doi:10.1109/embc.2019.8857527 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
| primary_location.landing_page_url | https://doi.org/10.1109/embc.2019.8857527 |
| publication_date | 2019-07-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2890354008, https://openalex.org/W6639824700, https://openalex.org/W2963220672, https://openalex.org/W6637373629, https://openalex.org/W2963881378, https://openalex.org/W205495280, https://openalex.org/W2169079203, https://openalex.org/W6698368482, https://openalex.org/W2484736472, https://openalex.org/W2807044098, https://openalex.org/W2071568823, https://openalex.org/W2049737860, https://openalex.org/W2301358467, https://openalex.org/W2914755156, https://openalex.org/W2962835968, https://openalex.org/W1901129140, https://openalex.org/W2312104448 |
| referenced_works_count | 17 |
| abstract_inverted_index.A | 20 |
| abstract_inverted_index.a | 3, 18, 25, 91, 109, 152, 200, 217 |
| abstract_inverted_index.In | 147, 194 |
| abstract_inverted_index.an | 128, 211, 250 |
| abstract_inverted_index.as | 52, 216 |
| abstract_inverted_index.at | 33 |
| abstract_inverted_index.be | 99 |
| abstract_inverted_index.by | 7 |
| abstract_inverted_index.in | 43, 61, 130, 144, 163, 183, 191 |
| abstract_inverted_index.is | 2, 22, 64, 84, 113, 125, 208, 237 |
| abstract_inverted_index.it | 135 |
| abstract_inverted_index.of | 9, 36, 47, 57, 111, 119, 133, 159, 176, 197, 199, 203, 227, 254, 260 |
| abstract_inverted_index.on | 240 |
| abstract_inverted_index.to | 12, 72, 98, 102, 115, 140, 247 |
| abstract_inverted_index.we | 150 |
| abstract_inverted_index.CNN | 207 |
| abstract_inverted_index.The | 122, 178 |
| abstract_inverted_index.and | 59, 76, 106, 161, 170, 256, 262 |
| abstract_inverted_index.are | 50 |
| abstract_inverted_index.for | 66, 87, 157, 188, 258 |
| abstract_inverted_index.has | 94 |
| abstract_inverted_index.not | 95 |
| abstract_inverted_index.the | 13, 34, 37, 44, 48, 53, 74, 117, 120, 131, 138, 195, 206, 241 |
| abstract_inverted_index.two | 229 |
| abstract_inverted_index.0.73 | 257 |
| abstract_inverted_index.0.82 | 255 |
| abstract_inverted_index.Dice | 252 |
| abstract_inverted_index.MRI. | 177 |
| abstract_inverted_index.This | 235 |
| abstract_inverted_index.able | 101 |
| abstract_inverted_index.been | 96 |
| abstract_inverted_index.core | 26, 58, 105, 160, 263 |
| abstract_inverted_index.from | 224 |
| abstract_inverted_index.into | 24 |
| abstract_inverted_index.loss | 219 |
| abstract_inverted_index.maps | 175 |
| abstract_inverted_index.that | 126 |
| abstract_inverted_index.this | 148 |
| abstract_inverted_index.thus | 16 |
| abstract_inverted_index.with | 28, 69, 127, 221, 249 |
| abstract_inverted_index.(CNN) | 187 |
| abstract_inverted_index.(DWI) | 169 |
| abstract_inverted_index.(MRI) | 83 |
| abstract_inverted_index.(PWI) | 173 |
| abstract_inverted_index.Early | 55 |
| abstract_inverted_index.along | 220 |
| abstract_inverted_index.blood | 10 |
| abstract_inverted_index.brain | 14 |
| abstract_inverted_index.data, | 205 |
| abstract_inverted_index.found | 97 |
| abstract_inverted_index.fully | 154 |
| abstract_inverted_index.large | 201 |
| abstract_inverted_index.outer | 45 |
| abstract_inverted_index.score | 253 |
| abstract_inverted_index.taxes | 137 |
| abstract_inverted_index.test. | 234 |
| abstract_inverted_index.these | 145 |
| abstract_inverted_index.three | 225 |
| abstract_inverted_index.using | 166, 210 |
| abstract_inverted_index.which | 228 |
| abstract_inverted_index.while | 39, 108 |
| abstract_inverted_index.zoned | 23 |
| abstract_inverted_index.Turing | 233 |
| abstract_inverted_index.amount | 202 |
| abstract_inverted_index.caused | 6 |
| abstract_inverted_index.center | 35 |
| abstract_inverted_index.damage | 75 |
| abstract_inverted_index.employ | 230 |
| abstract_inverted_index.extent | 118 |
| abstract_inverted_index.lesion | 21, 49 |
| abstract_inverted_index.losses | 222 |
| abstract_inverted_index.method | 156, 179, 236 |
| abstract_inverted_index.neural | 185 |
| abstract_inverted_index.number | 132 |
| abstract_inverted_index.obtain | 248 |
| abstract_inverted_index.paper, | 149 |
| abstract_inverted_index.recent | 181 |
| abstract_inverted_index.singly | 93 |
| abstract_inverted_index.stroke | 1, 63 |
| abstract_inverted_index.supply | 11 |
| abstract_inverted_index.termed | 51 |
| abstract_inverted_index.timely | 67 |
| abstract_inverted_index.tissue | 15 |
| abstract_inverted_index.visual | 232 |
| abstract_inverted_index.absence | 196 |
| abstract_inverted_index.average | 251 |
| abstract_inverted_index.between | 104 |
| abstract_inverted_index.changes | 42 |
| abstract_inverted_index.crucial | 65 |
| abstract_inverted_index.damage. | 121 |
| abstract_inverted_index.dataset | 243 |
| abstract_inverted_index.employs | 180 |
| abstract_inverted_index.forming | 17 |
| abstract_inverted_index.hypoxic | 41 |
| abstract_inverted_index.images. | 146, 193 |
| abstract_inverted_index.imaging | 82, 168, 172 |
| abstract_inverted_index.labeled | 204 |
| abstract_inverted_index.lesion, | 38 |
| abstract_inverted_index.lesion. | 19 |
| abstract_inverted_index.lesions | 165 |
| abstract_inverted_index.located | 32 |
| abstract_inverted_index.medical | 4, 192 |
| abstract_inverted_index.present | 151 |
| abstract_inverted_index.regions | 46 |
| abstract_inverted_index.restore | 77 |
| abstract_inverted_index.reverse | 73 |
| abstract_inverted_index.therapy | 71 |
| abstract_inverted_index.through | 244 |
| abstract_inverted_index.trained | 209 |
| abstract_inverted_index.However, | 90 |
| abstract_inverted_index.approach | 213 |
| abstract_inverted_index.clinical | 88 |
| abstract_inverted_index.commonly | 85 |
| abstract_inverted_index.discover | 141 |
| abstract_inverted_index.employed | 86 |
| abstract_inverted_index.however, | 124 |
| abstract_inverted_index.increase | 129 |
| abstract_inverted_index.magnetic | 80 |
| abstract_inverted_index.necrosis | 30 |
| abstract_inverted_index.networks | 186 |
| abstract_inverted_index.penumbra | 60, 162, 261 |
| abstract_inverted_index.required | 114 |
| abstract_inverted_index.semantic | 189 |
| abstract_inverted_index.sequence | 92, 174 |
| abstract_inverted_index.Ischaemic | 0 |
| abstract_inverted_index.automated | 155 |
| abstract_inverted_index.clinician | 139 |
| abstract_inverted_index.condition | 5 |
| abstract_inverted_index.determine | 116 |
| abstract_inverted_index.employing | 214 |
| abstract_inverted_index.ischaemic | 62, 164 |
| abstract_inverted_index.normalcy. | 78 |
| abstract_inverted_index.occlusion | 8 |
| abstract_inverted_index.penumbra, | 107 |
| abstract_inverted_index.penumbra. | 54 |
| abstract_inverted_index.resonance | 81 |
| abstract_inverted_index.sequences | 112 |
| abstract_inverted_index.typically | 31 |
| abstract_inverted_index.validated | 239 |
| abstract_inverted_index.ISLES-2015 | 242 |
| abstract_inverted_index.aggregated | 223 |
| abstract_inverted_index.associated | 27 |
| abstract_inverted_index.biomarkers | 143 |
| abstract_inverted_index.challenge, | 123 |
| abstract_inverted_index.diagnosis. | 89 |
| abstract_inverted_index.estimation | 56, 158 |
| abstract_inverted_index.reversible | 40 |
| abstract_inverted_index.sequences, | 134 |
| abstract_inverted_index.three-fold | 245 |
| abstract_inverted_index.adversarial | 212 |
| abstract_inverted_index.cognitively | 136 |
| abstract_inverted_index.combination | 110 |
| abstract_inverted_index.data-driven | 153 |
| abstract_inverted_index.symptomatic | 142 |
| abstract_inverted_index.availability | 198 |
| abstract_inverted_index.developments | 182 |
| abstract_inverted_index.intervention | 68 |
| abstract_inverted_index.irreversible | 29 |
| abstract_inverted_index.relativistic | 231 |
| abstract_inverted_index.segmentation | 190, 218, 259 |
| abstract_inverted_index.sufficiently | 100 |
| abstract_inverted_index.thrombolytic | 70 |
| abstract_inverted_index.Multisequence | 79 |
| abstract_inverted_index.convolutional | 184 |
| abstract_inverted_index.cross-entropy | 215 |
| abstract_inverted_index.differentiate | 103 |
| abstract_inverted_index.respectively. | 264 |
| abstract_inverted_index.discriminators | 226 |
| abstract_inverted_index.experimentally | 238 |
| abstract_inverted_index.cross-validation | 246 |
| abstract_inverted_index.diffusion-weighted | 167 |
| abstract_inverted_index.perfusion-weighted | 171 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.54504063 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |