Aerial remote sensing system to control pathogens and diseases in broccoli crops with the use of artificial vision Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.atech.2024.100739
Broccoli is one of Ecuador's main agricultural products and is exported worldwide. To ensure high-quality production, routine inspections are necessary to counteract pathogens and diseases. This study presents an aerial remote sensing system to monitor broccoli crops using pre-programmed flight plans to assess crop health and enable timely treatments. The system leverages the YOLO v5x algorithm for deep learning under various production conditions. An autonomous drone, equipped with GPS for grid flight planning, captures high-definition images every 2 seconds. These images, tagged with geolocation data, are processed through a Python-based graphical interface. The results are stored in a database to improve the system's accuracy in detecting false positives and negatives.The aerial remote sensing system successfully monitored broccoli crops, identifying areas affected by pathogens and diseases. The YOLO v5x algorithm demonstrated high accuracy in image analysis, reducing false detections. The system's autonomous drone efficiently covered large crop areas, providing precise geolocation data for targeted interventions. The collected data, stored in a centralized database, facilitated continuous improvement of the detection algorithm, ensuring reliable pathogen control and maintaining high production quality.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.atech.2024.100739
- OA Status
- gold
- Cited By
- 5
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405835777
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405835777Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.atech.2024.100739Digital Object Identifier
- Title
-
Aerial remote sensing system to control pathogens and diseases in broccoli crops with the use of artificial visionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-27Full publication date if available
- Authors
-
Davor Laura, Elsa Pilar Urrutia, Franklin Salazar, Jeanette Ureña, Rodrigo Moreno, Gustavo Machado, María Francisca Cazorla Logroño, Santiago AltamiranoList of authors in order
- Landing page
-
https://doi.org/10.1016/j.atech.2024.100739Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.atech.2024.100739Direct OA link when available
- Concepts
-
Remote sensing, Artificial intelligence, Agronomy, Agroforestry, Biology, Biotechnology, Agricultural engineering, Geography, Computer science, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405835777 |
|---|---|
| doi | https://doi.org/10.1016/j.atech.2024.100739 |
| ids.doi | https://doi.org/10.1016/j.atech.2024.100739 |
| ids.openalex | https://openalex.org/W4405835777 |
| fwci | 3.91024538 |
| type | article |
| title | Aerial remote sensing system to control pathogens and diseases in broccoli crops with the use of artificial vision |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | 100739 |
| biblio.first_page | 100739 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9574999809265137 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T10111 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.909500002861023 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Remote Sensing in Agriculture |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | USD |
| apc_list.value_usd | 1800 |
| apc_paid.value | 1800 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1800 |
| concepts[0].id | https://openalex.org/C62649853 |
| concepts[0].level | 1 |
| concepts[0].score | 0.4352068305015564 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[0].display_name | Remote sensing |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4212467670440674 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C6557445 |
| concepts[2].level | 1 |
| concepts[2].score | 0.39253783226013184 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[2].display_name | Agronomy |
| concepts[3].id | https://openalex.org/C54286561 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3598998188972473 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q397350 |
| concepts[3].display_name | Agroforestry |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3519638180732727 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C150903083 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3487677276134491 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7108 |
| concepts[5].display_name | Biotechnology |
| concepts[6].id | https://openalex.org/C88463610 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3482753336429596 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[6].display_name | Agricultural engineering |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.30648064613342285 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.30544131994247437 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.22688552737236023 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/remote-sensing |
| keywords[0].score | 0.4352068305015564 |
| keywords[0].display_name | Remote sensing |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.4212467670440674 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/agronomy |
| keywords[2].score | 0.39253783226013184 |
| keywords[2].display_name | Agronomy |
| keywords[3].id | https://openalex.org/keywords/agroforestry |
| keywords[3].score | 0.3598998188972473 |
| keywords[3].display_name | Agroforestry |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.3519638180732727 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/biotechnology |
| keywords[5].score | 0.3487677276134491 |
| keywords[5].display_name | Biotechnology |
| keywords[6].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[6].score | 0.3482753336429596 |
| keywords[6].display_name | Agricultural engineering |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.30648064613342285 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.30544131994247437 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.22688552737236023 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.atech.2024.100739 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210238883 |
| locations[0].source.issn | 2772-3755 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2772-3755 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Smart Agricultural Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Smart Agricultural Technology |
| locations[0].landing_page_url | https://doi.org/10.1016/j.atech.2024.100739 |
| locations[1].id | pmh:oai:doaj.org/article:9561640ab9c840dda563d164d6a89c76 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Smart Agricultural Technology, Vol 10, Iss , Pp 100739- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/9561640ab9c840dda563d164d6a89c76 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5110297348 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Davor Laura |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Darwin Laura |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5115673047 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Elsa Pilar Urrutia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Elsa Pilar Urrutia |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029687038 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3404-5202 |
| authorships[2].author.display_name | Franklin Salazar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Franklin Salazar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091272945 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0275-7210 |
| authorships[3].author.display_name | Jeanette Ureña |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jeanette Ureña |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5088940499 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Rodrigo Moreno |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rodrigo Moreno |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5069894931 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7552-6144 |
| authorships[5].author.display_name | Gustavo Machado |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gustavo Machado |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5003486793 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5200-8499 |
| authorships[6].author.display_name | María Francisca Cazorla Logroño |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Maria Cazorla-Logroño |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5006285792 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6899-4724 |
| authorships[7].author.display_name | Santiago Altamirano |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Santiago Altamirano |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.atech.2024.100739 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Aerial remote sensing system to control pathogens and diseases in broccoli crops with the use of artificial vision |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9574999809265137 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2121524756, https://openalex.org/W782553550, https://openalex.org/W1987967678, https://openalex.org/W2633218168, https://openalex.org/W4235897794, https://openalex.org/W2059707233, https://openalex.org/W1983126463, https://openalex.org/W2085738998, https://openalex.org/W2095126257, https://openalex.org/W2031511989 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.atech.2024.100739 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210238883 |
| best_oa_location.source.issn | 2772-3755 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2772-3755 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Smart Agricultural Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Smart Agricultural Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.atech.2024.100739 |
| primary_location.id | doi:10.1016/j.atech.2024.100739 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210238883 |
| primary_location.source.issn | 2772-3755 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2772-3755 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Smart Agricultural Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Smart Agricultural Technology |
| primary_location.landing_page_url | https://doi.org/10.1016/j.atech.2024.100739 |
| publication_date | 2024-12-27 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2947521956, https://openalex.org/W3096385341, https://openalex.org/W4213451711, https://openalex.org/W4327950595, https://openalex.org/W3119932065, https://openalex.org/W2266308432, https://openalex.org/W2923586102, https://openalex.org/W4210420555, https://openalex.org/W3175099349, https://openalex.org/W6785047277, https://openalex.org/W6777644035, https://openalex.org/W3098774131 |
| referenced_works_count | 12 |
| abstract_inverted_index.2 | 77 |
| abstract_inverted_index.a | 88, 97, 159 |
| abstract_inverted_index.An | 63 |
| abstract_inverted_index.To | 12 |
| abstract_inverted_index.an | 28 |
| abstract_inverted_index.by | 121 |
| abstract_inverted_index.in | 96, 104, 132, 158 |
| abstract_inverted_index.is | 1, 9 |
| abstract_inverted_index.of | 3, 165 |
| abstract_inverted_index.to | 20, 33, 41, 99 |
| abstract_inverted_index.GPS | 68 |
| abstract_inverted_index.The | 49, 92, 125, 138, 154 |
| abstract_inverted_index.and | 8, 23, 45, 108, 123, 173 |
| abstract_inverted_index.are | 18, 85, 94 |
| abstract_inverted_index.for | 56, 69, 151 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.the | 52, 101, 166 |
| abstract_inverted_index.v5x | 54, 127 |
| abstract_inverted_index.This | 25 |
| abstract_inverted_index.YOLO | 53, 126 |
| abstract_inverted_index.crop | 43, 145 |
| abstract_inverted_index.data | 150 |
| abstract_inverted_index.deep | 57 |
| abstract_inverted_index.grid | 70 |
| abstract_inverted_index.high | 130, 175 |
| abstract_inverted_index.main | 5 |
| abstract_inverted_index.with | 67, 82 |
| abstract_inverted_index.These | 79 |
| abstract_inverted_index.areas | 119 |
| abstract_inverted_index.crops | 36 |
| abstract_inverted_index.data, | 84, 156 |
| abstract_inverted_index.drone | 141 |
| abstract_inverted_index.every | 76 |
| abstract_inverted_index.false | 106, 136 |
| abstract_inverted_index.image | 133 |
| abstract_inverted_index.large | 144 |
| abstract_inverted_index.plans | 40 |
| abstract_inverted_index.study | 26 |
| abstract_inverted_index.under | 59 |
| abstract_inverted_index.using | 37 |
| abstract_inverted_index.aerial | 29, 110 |
| abstract_inverted_index.areas, | 146 |
| abstract_inverted_index.assess | 42 |
| abstract_inverted_index.crops, | 117 |
| abstract_inverted_index.drone, | 65 |
| abstract_inverted_index.enable | 46 |
| abstract_inverted_index.ensure | 13 |
| abstract_inverted_index.flight | 39, 71 |
| abstract_inverted_index.health | 44 |
| abstract_inverted_index.images | 75 |
| abstract_inverted_index.remote | 30, 111 |
| abstract_inverted_index.stored | 95, 157 |
| abstract_inverted_index.system | 32, 50, 113 |
| abstract_inverted_index.tagged | 81 |
| abstract_inverted_index.timely | 47 |
| abstract_inverted_index.control | 172 |
| abstract_inverted_index.covered | 143 |
| abstract_inverted_index.images, | 80 |
| abstract_inverted_index.improve | 100 |
| abstract_inverted_index.monitor | 34 |
| abstract_inverted_index.precise | 148 |
| abstract_inverted_index.results | 93 |
| abstract_inverted_index.routine | 16 |
| abstract_inverted_index.sensing | 31, 112 |
| abstract_inverted_index.through | 87 |
| abstract_inverted_index.various | 60 |
| abstract_inverted_index.Broccoli | 0 |
| abstract_inverted_index.accuracy | 103, 131 |
| abstract_inverted_index.affected | 120 |
| abstract_inverted_index.broccoli | 35, 116 |
| abstract_inverted_index.captures | 73 |
| abstract_inverted_index.database | 98 |
| abstract_inverted_index.ensuring | 169 |
| abstract_inverted_index.equipped | 66 |
| abstract_inverted_index.exported | 10 |
| abstract_inverted_index.learning | 58 |
| abstract_inverted_index.pathogen | 171 |
| abstract_inverted_index.presents | 27 |
| abstract_inverted_index.products | 7 |
| abstract_inverted_index.quality. | 177 |
| abstract_inverted_index.reducing | 135 |
| abstract_inverted_index.reliable | 170 |
| abstract_inverted_index.seconds. | 78 |
| abstract_inverted_index.system's | 102, 139 |
| abstract_inverted_index.targeted | 152 |
| abstract_inverted_index.Ecuador's | 4 |
| abstract_inverted_index.algorithm | 55, 128 |
| abstract_inverted_index.analysis, | 134 |
| abstract_inverted_index.collected | 155 |
| abstract_inverted_index.database, | 161 |
| abstract_inverted_index.detecting | 105 |
| abstract_inverted_index.detection | 167 |
| abstract_inverted_index.diseases. | 24, 124 |
| abstract_inverted_index.graphical | 90 |
| abstract_inverted_index.leverages | 51 |
| abstract_inverted_index.monitored | 115 |
| abstract_inverted_index.necessary | 19 |
| abstract_inverted_index.pathogens | 22, 122 |
| abstract_inverted_index.planning, | 72 |
| abstract_inverted_index.positives | 107 |
| abstract_inverted_index.processed | 86 |
| abstract_inverted_index.providing | 147 |
| abstract_inverted_index.algorithm, | 168 |
| abstract_inverted_index.autonomous | 64, 140 |
| abstract_inverted_index.continuous | 163 |
| abstract_inverted_index.counteract | 21 |
| abstract_inverted_index.interface. | 91 |
| abstract_inverted_index.production | 61, 176 |
| abstract_inverted_index.worldwide. | 11 |
| abstract_inverted_index.centralized | 160 |
| abstract_inverted_index.conditions. | 62 |
| abstract_inverted_index.detections. | 137 |
| abstract_inverted_index.efficiently | 142 |
| abstract_inverted_index.facilitated | 162 |
| abstract_inverted_index.geolocation | 83, 149 |
| abstract_inverted_index.identifying | 118 |
| abstract_inverted_index.improvement | 164 |
| abstract_inverted_index.inspections | 17 |
| abstract_inverted_index.maintaining | 174 |
| abstract_inverted_index.production, | 15 |
| abstract_inverted_index.treatments. | 48 |
| abstract_inverted_index.Python-based | 89 |
| abstract_inverted_index.agricultural | 6 |
| abstract_inverted_index.demonstrated | 129 |
| abstract_inverted_index.high-quality | 14 |
| abstract_inverted_index.successfully | 114 |
| abstract_inverted_index.negatives.The | 109 |
| abstract_inverted_index.interventions. | 153 |
| abstract_inverted_index.pre-programmed | 38 |
| abstract_inverted_index.high-definition | 74 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.9363723 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |