Aerodynamic Shape Optimization of Rockets Based on a Multi-Fidelity Neural Network Surrogate Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/3109/1/012066
This study presents a complete workflow integrating parametric modeling of complex rocket geometries, multi-fidelity data fusion, deep neural network surrogate, and aerodynamic shape optimization. A CAD-based parametric approach was implemented to describe a “Von Kármán nose cone-boosterless-tailless rocket” configuration, with initial design samples generated via Latin Hypercube Sampling to support mesh generation and computational fluid dynamics (CFD) simulations. Aerodynamic datasets containing multiple performance parameters were constructed through CFD computations, subsequently enabling the training and validation of deep learning models. A multi-fidelity neural network architecture was developed to synergistically integrate low- and high-fidelity data, establishing a surrogate-assisted optimization framework that constitutes a variant of discrete adjoint optimization. For the operational condition of Mach 2 at a 6° angle of attack, the optimization strategy, which fixed the center of pressure while minimizing axial force, achieved a 30% reduction in axial force magnitude. These results systematically validate the computational robustness of the proposed algorithm and the practical efficacy of the optimization framework.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.1088/1742-6596/3109/1/012066
- OA Status
- diamond
- References
- 7
- OpenAlex ID
- https://openalex.org/W4415617412
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415617412Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/3109/1/012066Digital Object Identifier
- Title
-
Aerodynamic Shape Optimization of Rockets Based on a Multi-Fidelity Neural Network Surrogate ModelWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-01Full publication date if available
- Authors
-
Li-Wei Chen, Qin Tong, Chuanqiang Gao, Han Zeng, Zhonghua HanList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/3109/1/012066Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/3109/1/012066Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
7Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415617412 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/3109/1/012066 |
| ids.doi | https://doi.org/10.1088/1742-6596/3109/1/012066 |
| ids.openalex | https://openalex.org/W4415617412 |
| fwci | |
| type | article |
| title | Aerodynamic Shape Optimization of Rockets Based on a Multi-Fidelity Neural Network Surrogate Model |
| biblio.issue | 1 |
| biblio.volume | 3109 |
| biblio.last_page | 012066 |
| biblio.first_page | 012066 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.1088/1742-6596/3109/1/012066 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/3109/1/012066 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5021688498 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0309-2284 |
| authorships[0].author.display_name | Li-Wei Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liwei Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103037749 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7011-6514 |
| authorships[1].author.display_name | Qin Tong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tong Qin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101425641 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8674-7759 |
| authorships[2].author.display_name | Chuanqiang Gao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wuhuan Gao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5022689002 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5992-8730 |
| authorships[3].author.display_name | Han Zeng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Han Zeng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103029659 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7942-1091 |
| authorships[4].author.display_name | Zhonghua Han |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhonghua Han |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/3109/1/012066 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-28T00:00:00 |
| display_name | Aerodynamic Shape Optimization of Rockets Based on a Multi-Fidelity Neural Network Surrogate Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/3109/1/012066 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/3109/1/012066 |
| primary_location.id | doi:10.1088/1742-6596/3109/1/012066 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/3109/1/012066 |
| publication_date | 2025-10-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4400879633, https://openalex.org/W4391324983, https://openalex.org/W2054374813, https://openalex.org/W1984753492, https://openalex.org/W3090646395, https://openalex.org/W2132169421, https://openalex.org/W2919958648 |
| referenced_works_count | 7 |
| abstract_inverted_index.2 | 113 |
| abstract_inverted_index.A | 25, 80 |
| abstract_inverted_index.a | 4, 33, 95, 101, 115, 134 |
| abstract_inverted_index.at | 114 |
| abstract_inverted_index.in | 137 |
| abstract_inverted_index.of | 10, 76, 103, 111, 118, 127, 148, 156 |
| abstract_inverted_index.to | 31, 49, 87 |
| abstract_inverted_index.30% | 135 |
| abstract_inverted_index.6° | 116 |
| abstract_inverted_index.CFD | 68 |
| abstract_inverted_index.For | 107 |
| abstract_inverted_index.and | 21, 53, 74, 91, 152 |
| abstract_inverted_index.the | 72, 108, 120, 125, 145, 149, 153, 157 |
| abstract_inverted_index.via | 45 |
| abstract_inverted_index.was | 29, 85 |
| abstract_inverted_index.Mach | 112 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.data | 15 |
| abstract_inverted_index.deep | 17, 77 |
| abstract_inverted_index.low- | 90 |
| abstract_inverted_index.mesh | 51 |
| abstract_inverted_index.nose | 36 |
| abstract_inverted_index.that | 99 |
| abstract_inverted_index.were | 65 |
| abstract_inverted_index.with | 40 |
| abstract_inverted_index.(CFD) | 57 |
| abstract_inverted_index.Latin | 46 |
| abstract_inverted_index.These | 141 |
| abstract_inverted_index.angle | 117 |
| abstract_inverted_index.axial | 131, 138 |
| abstract_inverted_index.data, | 93 |
| abstract_inverted_index.fixed | 124 |
| abstract_inverted_index.fluid | 55 |
| abstract_inverted_index.force | 139 |
| abstract_inverted_index.shape | 23 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.which | 123 |
| abstract_inverted_index.while | 129 |
| abstract_inverted_index.center | 126 |
| abstract_inverted_index.design | 42 |
| abstract_inverted_index.force, | 132 |
| abstract_inverted_index.neural | 18, 82 |
| abstract_inverted_index.rocket | 12 |
| abstract_inverted_index.“Von | 34 |
| abstract_inverted_index.adjoint | 105 |
| abstract_inverted_index.attack, | 119 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.fusion, | 16 |
| abstract_inverted_index.initial | 41 |
| abstract_inverted_index.models. | 79 |
| abstract_inverted_index.network | 19, 83 |
| abstract_inverted_index.results | 142 |
| abstract_inverted_index.samples | 43 |
| abstract_inverted_index.support | 50 |
| abstract_inverted_index.through | 67 |
| abstract_inverted_index.variant | 102 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Kármán | 35 |
| abstract_inverted_index.Sampling | 48 |
| abstract_inverted_index.achieved | 133 |
| abstract_inverted_index.approach | 28 |
| abstract_inverted_index.complete | 5 |
| abstract_inverted_index.datasets | 60 |
| abstract_inverted_index.describe | 32 |
| abstract_inverted_index.discrete | 104 |
| abstract_inverted_index.dynamics | 56 |
| abstract_inverted_index.efficacy | 155 |
| abstract_inverted_index.enabling | 71 |
| abstract_inverted_index.learning | 78 |
| abstract_inverted_index.modeling | 9 |
| abstract_inverted_index.multiple | 62 |
| abstract_inverted_index.presents | 3 |
| abstract_inverted_index.pressure | 128 |
| abstract_inverted_index.proposed | 150 |
| abstract_inverted_index.training | 73 |
| abstract_inverted_index.validate | 144 |
| abstract_inverted_index.workflow | 6 |
| abstract_inverted_index.CAD-based | 26 |
| abstract_inverted_index.Hypercube | 47 |
| abstract_inverted_index.algorithm | 151 |
| abstract_inverted_index.condition | 110 |
| abstract_inverted_index.developed | 86 |
| abstract_inverted_index.framework | 98 |
| abstract_inverted_index.generated | 44 |
| abstract_inverted_index.integrate | 89 |
| abstract_inverted_index.practical | 154 |
| abstract_inverted_index.reduction | 136 |
| abstract_inverted_index.rocket” | 38 |
| abstract_inverted_index.strategy, | 122 |
| abstract_inverted_index.containing | 61 |
| abstract_inverted_index.framework. | 159 |
| abstract_inverted_index.generation | 52 |
| abstract_inverted_index.magnitude. | 140 |
| abstract_inverted_index.minimizing | 130 |
| abstract_inverted_index.parameters | 64 |
| abstract_inverted_index.parametric | 8, 27 |
| abstract_inverted_index.robustness | 147 |
| abstract_inverted_index.surrogate, | 20 |
| abstract_inverted_index.validation | 75 |
| abstract_inverted_index.Aerodynamic | 59 |
| abstract_inverted_index.aerodynamic | 22 |
| abstract_inverted_index.constitutes | 100 |
| abstract_inverted_index.constructed | 66 |
| abstract_inverted_index.geometries, | 13 |
| abstract_inverted_index.implemented | 30 |
| abstract_inverted_index.integrating | 7 |
| abstract_inverted_index.operational | 109 |
| abstract_inverted_index.performance | 63 |
| abstract_inverted_index.architecture | 84 |
| abstract_inverted_index.establishing | 94 |
| abstract_inverted_index.optimization | 97, 121, 158 |
| abstract_inverted_index.simulations. | 58 |
| abstract_inverted_index.subsequently | 70 |
| abstract_inverted_index.computational | 54, 146 |
| abstract_inverted_index.computations, | 69 |
| abstract_inverted_index.high-fidelity | 92 |
| abstract_inverted_index.optimization. | 24, 106 |
| abstract_inverted_index.configuration, | 39 |
| abstract_inverted_index.multi-fidelity | 14, 81 |
| abstract_inverted_index.systematically | 143 |
| abstract_inverted_index.synergistically | 88 |
| abstract_inverted_index.surrogate-assisted | 96 |
| abstract_inverted_index.cone-boosterless-tailless | 37 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |