AF-SRNet: Quantitative Precipitation Forecasting Model Based on Attention Fusion Mechanism and Residual Spatiotemporal Feature Extraction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14205106
Reliable quantitative precipitation forecasting is essential to society. At present, quantitative precipitation forecasting based on weather radar represents an urgently needed, yet rather challenging. However, because the Z-R relation between radar and rainfall has several parameters in different areas, and because rainfall varies with seasons, traditional methods cannot capture high-resolution spatiotemporal features. Therefore, we propose an attention fusion spatiotemporal residual network (AF-SRNet) to forecast rainfall precisely for the weak continuity of convective precipitation. Specifically, the spatiotemporal residual network is designed to extract the deep spatiotemporal features of radar echo and precipitation data. Then, we combine the radar echo feature and precipitation feature as the input of the decoder through the attention fusion block; after that, the decoder forecasts the rainfall for the next two hours. We train and evaluate our approaches on the historical data from the Jiangsu Meteorological Observatory. The experimental results show that AF-SRNet can effectively utilize multiple inputs and provides more precise nowcasting of convective precipitation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14205106
- https://www.mdpi.com/2072-4292/14/20/5106/pdf?version=1666592117
- OA Status
- gold
- Cited By
- 9
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4304775836
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4304775836Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14205106Digital Object Identifier
- Title
-
AF-SRNet: Quantitative Precipitation Forecasting Model Based on Attention Fusion Mechanism and Residual Spatiotemporal Feature ExtractionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-12Full publication date if available
- Authors
-
Liangchao Geng, Huantong Geng, Jinzhong Min, Xiaoran Zhuang, Yu ZhengList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14205106Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/20/5106/pdf?version=1666592117Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/20/5106/pdf?version=1666592117Direct OA link when available
- Concepts
-
Nowcasting, Quantitative precipitation forecast, Radar, Precipitation, Residual, Computer science, Feature (linguistics), Meteorology, Environmental science, Weather radar, Quantitative precipitation estimation, Artificial intelligence, Algorithm, Geography, Telecommunications, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 6, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4304775836 |
|---|---|
| doi | https://doi.org/10.3390/rs14205106 |
| ids.doi | https://doi.org/10.3390/rs14205106 |
| ids.openalex | https://openalex.org/W4304775836 |
| fwci | 1.10749093 |
| type | article |
| title | AF-SRNet: Quantitative Precipitation Forecasting Model Based on Attention Fusion Mechanism and Residual Spatiotemporal Feature Extraction |
| biblio.issue | 20 |
| biblio.volume | 14 |
| biblio.last_page | 5106 |
| biblio.first_page | 5106 |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T11234 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Precipitation Measurement and Analysis |
| topics[2].id | https://openalex.org/T11490 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9968000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Hydrological Forecasting Using AI |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C2781013037 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8713147640228271 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1433331 |
| concepts[0].display_name | Nowcasting |
| concepts[1].id | https://openalex.org/C140178040 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7244760394096375 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q18402512 |
| concepts[1].display_name | Quantitative precipitation forecast |
| concepts[2].id | https://openalex.org/C554190296 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7139865756034851 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[2].display_name | Radar |
| concepts[3].id | https://openalex.org/C107054158 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6740313768386841 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25257 |
| concepts[3].display_name | Precipitation |
| concepts[4].id | https://openalex.org/C155512373 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6331708431243896 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[4].display_name | Residual |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5473551750183105 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4836793839931488 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C153294291 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4682365953922272 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[7].display_name | Meteorology |
| concepts[8].id | https://openalex.org/C39432304 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4413529634475708 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[8].display_name | Environmental science |
| concepts[9].id | https://openalex.org/C92237259 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4182339310646057 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q863343 |
| concepts[9].display_name | Weather radar |
| concepts[10].id | https://openalex.org/C75398719 |
| concepts[10].level | 3 |
| concepts[10].score | 0.41020703315734863 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7268938 |
| concepts[10].display_name | Quantitative precipitation estimation |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3615630865097046 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11806812882423401 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09570044279098511 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.06943562626838684 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/nowcasting |
| keywords[0].score | 0.8713147640228271 |
| keywords[0].display_name | Nowcasting |
| keywords[1].id | https://openalex.org/keywords/quantitative-precipitation-forecast |
| keywords[1].score | 0.7244760394096375 |
| keywords[1].display_name | Quantitative precipitation forecast |
| keywords[2].id | https://openalex.org/keywords/radar |
| keywords[2].score | 0.7139865756034851 |
| keywords[2].display_name | Radar |
| keywords[3].id | https://openalex.org/keywords/precipitation |
| keywords[3].score | 0.6740313768386841 |
| keywords[3].display_name | Precipitation |
| keywords[4].id | https://openalex.org/keywords/residual |
| keywords[4].score | 0.6331708431243896 |
| keywords[4].display_name | Residual |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5473551750183105 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.4836793839931488 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/meteorology |
| keywords[7].score | 0.4682365953922272 |
| keywords[7].display_name | Meteorology |
| keywords[8].id | https://openalex.org/keywords/environmental-science |
| keywords[8].score | 0.4413529634475708 |
| keywords[8].display_name | Environmental science |
| keywords[9].id | https://openalex.org/keywords/weather-radar |
| keywords[9].score | 0.4182339310646057 |
| keywords[9].display_name | Weather radar |
| keywords[10].id | https://openalex.org/keywords/quantitative-precipitation-estimation |
| keywords[10].score | 0.41020703315734863 |
| keywords[10].display_name | Quantitative precipitation estimation |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3615630865097046 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.11806812882423401 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.09570044279098511 |
| keywords[13].display_name | Geography |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.06943562626838684 |
| keywords[14].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/rs14205106 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/20/5106/pdf?version=1666592117 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14205106 |
| locations[1].id | pmh:oai:doaj.org/article:a17e5d611de542028200bfca27d8d587 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 20, p 5106 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/a17e5d611de542028200bfca27d8d587 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/20/5106/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 20; Pages: 5106 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14205106 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5023934459 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2072-9272 |
| authorships[0].author.display_name | Liangchao Geng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[0].institutions[0].id | https://openalex.org/I200845125 |
| authorships[0].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liangchao Geng |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[1].author.id | https://openalex.org/A5033760810 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0345-4169 |
| authorships[1].author.display_name | Huantong Geng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[1].institutions[0].id | https://openalex.org/I200845125 |
| authorships[1].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huantong Geng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[2].author.id | https://openalex.org/A5068421995 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5187-7721 |
| authorships[2].author.display_name | Jinzhong Min |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[2].institutions[0].id | https://openalex.org/I200845125 |
| authorships[2].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jinzhong Min |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[3].author.id | https://openalex.org/A5051138869 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xiaoran Zhuang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210097298 |
| authorships[3].affiliations[0].raw_affiliation_string | Jiangsu Meteorological Observatory, Nanjing 210008, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210097298 |
| authorships[3].institutions[0].ror | https://ror.org/00t1yh273 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210097298 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jiangsu Provincial Meteorological Bureau |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaoran Zhuang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Jiangsu Meteorological Observatory, Nanjing 210008, China |
| authorships[4].author.id | https://openalex.org/A5006301424 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6166-5733 |
| authorships[4].author.display_name | Yu Zheng |
| authorships[4].affiliations[0].raw_affiliation_string | CMA Key Laboratory of Transportation Meteorology, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210041, China |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yu Zheng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | CMA Key Laboratory of Transportation Meteorology, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210041, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/20/5106/pdf?version=1666592117 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-10-13T00:00:00 |
| display_name | AF-SRNet: Quantitative Precipitation Forecasting Model Based on Attention Fusion Mechanism and Residual Spatiotemporal Feature Extraction |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W3163762477, https://openalex.org/W2353410199, https://openalex.org/W60774104, https://openalex.org/W3215855850, https://openalex.org/W4383749006, https://openalex.org/W2894648961, https://openalex.org/W2382614056, https://openalex.org/W4390754259, https://openalex.org/W3179094265, https://openalex.org/W2252739461 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14205106 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/20/5106/pdf?version=1666592117 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14205106 |
| primary_location.id | doi:10.3390/rs14205106 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/20/5106/pdf?version=1666592117 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14205106 |
| publication_date | 2022-10-12 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2058904392, https://openalex.org/W2036373175, https://openalex.org/W2013340826, https://openalex.org/W1997237762, https://openalex.org/W2464527142, https://openalex.org/W2024414272, https://openalex.org/W3215707958, https://openalex.org/W826107099, https://openalex.org/W2178394579, https://openalex.org/W6780777177, https://openalex.org/W1989679522, https://openalex.org/W6757613341, https://openalex.org/W2768975186, https://openalex.org/W2967033144, https://openalex.org/W4224320620, https://openalex.org/W3126335003, https://openalex.org/W2998982568, https://openalex.org/W6842345636, https://openalex.org/W3134265440, https://openalex.org/W2885327214, https://openalex.org/W2938218791, https://openalex.org/W3217658907, https://openalex.org/W2752782242, https://openalex.org/W3109184532, https://openalex.org/W3119912078, https://openalex.org/W3016496098, https://openalex.org/W2157331557, https://openalex.org/W2951554591, https://openalex.org/W4312794305, https://openalex.org/W3048374358, https://openalex.org/W3207011416, https://openalex.org/W1546243011, https://openalex.org/W2970971581, https://openalex.org/W2171314103, https://openalex.org/W3011365293, https://openalex.org/W4293192773, https://openalex.org/W3044470697 |
| referenced_works_count | 37 |
| abstract_inverted_index.At | 8 |
| abstract_inverted_index.We | 125 |
| abstract_inverted_index.an | 18, 55 |
| abstract_inverted_index.as | 102 |
| abstract_inverted_index.in | 36 |
| abstract_inverted_index.is | 4, 78 |
| abstract_inverted_index.of | 70, 86, 105, 156 |
| abstract_inverted_index.on | 14, 131 |
| abstract_inverted_index.to | 6, 62, 80 |
| abstract_inverted_index.we | 53, 93 |
| abstract_inverted_index.The | 140 |
| abstract_inverted_index.Z-R | 27 |
| abstract_inverted_index.and | 31, 39, 89, 99, 127, 151 |
| abstract_inverted_index.can | 146 |
| abstract_inverted_index.for | 66, 120 |
| abstract_inverted_index.has | 33 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.the | 26, 67, 74, 82, 95, 103, 106, 109, 115, 118, 121, 132, 136 |
| abstract_inverted_index.two | 123 |
| abstract_inverted_index.yet | 21 |
| abstract_inverted_index.data | 134 |
| abstract_inverted_index.deep | 83 |
| abstract_inverted_index.echo | 88, 97 |
| abstract_inverted_index.from | 135 |
| abstract_inverted_index.more | 153 |
| abstract_inverted_index.next | 122 |
| abstract_inverted_index.show | 143 |
| abstract_inverted_index.that | 144 |
| abstract_inverted_index.weak | 68 |
| abstract_inverted_index.with | 43 |
| abstract_inverted_index.Then, | 92 |
| abstract_inverted_index.after | 113 |
| abstract_inverted_index.based | 13 |
| abstract_inverted_index.data. | 91 |
| abstract_inverted_index.input | 104 |
| abstract_inverted_index.radar | 16, 30, 87, 96 |
| abstract_inverted_index.that, | 114 |
| abstract_inverted_index.train | 126 |
| abstract_inverted_index.areas, | 38 |
| abstract_inverted_index.block; | 112 |
| abstract_inverted_index.cannot | 47 |
| abstract_inverted_index.fusion | 57, 111 |
| abstract_inverted_index.hours. | 124 |
| abstract_inverted_index.inputs | 150 |
| abstract_inverted_index.rather | 22 |
| abstract_inverted_index.varies | 42 |
| abstract_inverted_index.Jiangsu | 137 |
| abstract_inverted_index.because | 25, 40 |
| abstract_inverted_index.between | 29 |
| abstract_inverted_index.capture | 48 |
| abstract_inverted_index.combine | 94 |
| abstract_inverted_index.decoder | 107, 116 |
| abstract_inverted_index.extract | 81 |
| abstract_inverted_index.feature | 98, 101 |
| abstract_inverted_index.methods | 46 |
| abstract_inverted_index.needed, | 20 |
| abstract_inverted_index.network | 60, 77 |
| abstract_inverted_index.precise | 154 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.results | 142 |
| abstract_inverted_index.several | 34 |
| abstract_inverted_index.through | 108 |
| abstract_inverted_index.utilize | 148 |
| abstract_inverted_index.weather | 15 |
| abstract_inverted_index.AF-SRNet | 145 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.Reliable | 0 |
| abstract_inverted_index.designed | 79 |
| abstract_inverted_index.evaluate | 128 |
| abstract_inverted_index.features | 85 |
| abstract_inverted_index.forecast | 63 |
| abstract_inverted_index.multiple | 149 |
| abstract_inverted_index.present, | 9 |
| abstract_inverted_index.provides | 152 |
| abstract_inverted_index.rainfall | 32, 41, 64, 119 |
| abstract_inverted_index.relation | 28 |
| abstract_inverted_index.residual | 59, 76 |
| abstract_inverted_index.seasons, | 44 |
| abstract_inverted_index.society. | 7 |
| abstract_inverted_index.urgently | 19 |
| abstract_inverted_index.attention | 56, 110 |
| abstract_inverted_index.different | 37 |
| abstract_inverted_index.essential | 5 |
| abstract_inverted_index.features. | 51 |
| abstract_inverted_index.forecasts | 117 |
| abstract_inverted_index.precisely | 65 |
| abstract_inverted_index.(AF-SRNet) | 61 |
| abstract_inverted_index.Therefore, | 52 |
| abstract_inverted_index.approaches | 130 |
| abstract_inverted_index.continuity | 69 |
| abstract_inverted_index.convective | 71, 157 |
| abstract_inverted_index.historical | 133 |
| abstract_inverted_index.nowcasting | 155 |
| abstract_inverted_index.parameters | 35 |
| abstract_inverted_index.represents | 17 |
| abstract_inverted_index.effectively | 147 |
| abstract_inverted_index.forecasting | 3, 12 |
| abstract_inverted_index.traditional | 45 |
| abstract_inverted_index.Observatory. | 139 |
| abstract_inverted_index.challenging. | 23 |
| abstract_inverted_index.experimental | 141 |
| abstract_inverted_index.quantitative | 1, 10 |
| abstract_inverted_index.Specifically, | 73 |
| abstract_inverted_index.precipitation | 2, 11, 90, 100 |
| abstract_inverted_index.Meteorological | 138 |
| abstract_inverted_index.precipitation. | 72, 158 |
| abstract_inverted_index.spatiotemporal | 50, 58, 75, 84 |
| abstract_inverted_index.high-resolution | 49 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5023934459 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I200845125 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.78042812 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |