AFE-Net: Attention-Guided Feature Enhancement Network for Infrared Small Target Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2024.3354244
Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this article, we propose an effective attention-guided feature enhancement network (AFE-Net), which can leverage the local and nonlocal features of targets and background in infrared images. The AFE-Net consists of three key modules, namely encoder and decoder interactive guidance (EDIG) module, cascading false alarm removal (CFAR) module, and random scale input (RSI) module. Specifically, in the EDIG module, we employ a CA mechanism on encoding and decoding layers to select feature channels with higher contribution. Then, we impose a bottom-up pointwise attention block to highlight the features of small infrared targets and suppress possible noise by incorporating the low-level detailed features into the high-level semantic features. The CFAR module extracts affluent global features by cascading nonlocal operations of different layers, which can remove clutters with similar features to infrared targets. The RSI module is placed in front of the entire detection network to extract multiscale features of infrared small targets, which can enhance the robustness of the proposed network. Experimental results on the SIRST dataset and comprehensive comparisons with representative methods demonstrate the superiority of our proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2024.3354244
- https://ieeexplore.ieee.org/ielx7/4609443/4609444/10400763.pdf
- OA Status
- gold
- Cited By
- 20
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390905672
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390905672Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2024.3354244Digital Object Identifier
- Title
-
AFE-Net: Attention-Guided Feature Enhancement Network for Infrared Small Target DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Keyan Wang, Xueyan Wu, Peicheng Zhou, Zuntian Chen, Rui Zhang, Liyun Yang, Yunsong LiList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2024.3354244Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/4609443/4609444/10400763.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/4609443/4609444/10400763.pdfDirect OA link when available
- Concepts
-
Computer science, Robustness (evolution), Artificial intelligence, Feature (linguistics), Encoder, Decoding methods, False alarm, Pattern recognition (psychology), Feature extraction, Leverage (statistics), Pixel, Computer vision, Algorithm, Chemistry, Philosophy, Biochemistry, Linguistics, Gene, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390905672 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2024.3354244 |
| ids.doi | https://doi.org/10.1109/jstars.2024.3354244 |
| ids.openalex | https://openalex.org/W4390905672 |
| fwci | 26.38212281 |
| type | article |
| title | AFE-Net: Attention-Guided Feature Enhancement Network for Infrared Small Target Detection |
| awards[0].id | https://openalex.org/G534896392 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | XJSJ23087 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[1].id | https://openalex.org/G5538951345 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62121001 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 4221 |
| biblio.first_page | 4208 |
| topics[0].id | https://openalex.org/T12389 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Infrared Target Detection Methodologies |
| topics[1].id | https://openalex.org/T14257 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Measurement and Detection Methods |
| topics[2].id | https://openalex.org/T11856 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.991599977016449 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Thermography and Photoacoustic Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335787 |
| funders[1].ror | |
| funders[1].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7915009260177612 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6379051208496094 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6126437187194824 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5685381889343262 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C118505674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5369949340820312 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[4].display_name | Encoder |
| concepts[5].id | https://openalex.org/C57273362 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4997584819793701 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[5].display_name | Decoding methods |
| concepts[6].id | https://openalex.org/C2776836416 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4957912862300873 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1364844 |
| concepts[6].display_name | False alarm |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48405733704566956 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C52622490 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4700765907764435 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[8].display_name | Feature extraction |
| concepts[9].id | https://openalex.org/C153083717 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4455114006996155 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[9].display_name | Leverage (statistics) |
| concepts[10].id | https://openalex.org/C160633673 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4146322011947632 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[10].display_name | Pixel |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37632426619529724 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09089988470077515 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7915009260177612 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.6379051208496094 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6126437187194824 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.5685381889343262 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/encoder |
| keywords[4].score | 0.5369949340820312 |
| keywords[4].display_name | Encoder |
| keywords[5].id | https://openalex.org/keywords/decoding-methods |
| keywords[5].score | 0.4997584819793701 |
| keywords[5].display_name | Decoding methods |
| keywords[6].id | https://openalex.org/keywords/false-alarm |
| keywords[6].score | 0.4957912862300873 |
| keywords[6].display_name | False alarm |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.48405733704566956 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/feature-extraction |
| keywords[8].score | 0.4700765907764435 |
| keywords[8].display_name | Feature extraction |
| keywords[9].id | https://openalex.org/keywords/leverage |
| keywords[9].score | 0.4455114006996155 |
| keywords[9].display_name | Leverage (statistics) |
| keywords[10].id | https://openalex.org/keywords/pixel |
| keywords[10].score | 0.4146322011947632 |
| keywords[10].display_name | Pixel |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.37632426619529724 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.09089988470077515 |
| keywords[12].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1109/jstars.2024.3354244 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/10400763.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2024.3354244 |
| locations[1].id | pmh:oai:doaj.org/article:10fcdfa42149489d91084e93e163e860 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 4208-4221 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/10fcdfa42149489d91084e93e163e860 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5013877857 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6116-9286 |
| authorships[0].author.display_name | Keyan Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210115146 |
| authorships[0].affiliations[1].raw_affiliation_string | Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an, Shaanxi, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210115146 |
| authorships[0].institutions[0].ror | https://ror.org/01hy8fk80 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210115146 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guizhou Electromechanical Research and Design Institute |
| authorships[0].institutions[1].id | https://openalex.org/I149594827 |
| authorships[0].institutions[1].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Keyan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an, Shaanxi, China, State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[1].author.id | https://openalex.org/A5102934708 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-7690-3130 |
| authorships[1].author.display_name | Xueyan Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xueyan Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[2].author.id | https://openalex.org/A5063501920 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2468-3128 |
| authorships[2].author.display_name | Peicheng Zhou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peicheng Zhou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[3].author.id | https://openalex.org/A5107944626 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-5794-0620 |
| authorships[3].author.display_name | Zuntian Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210115146 |
| authorships[3].affiliations[1].raw_affiliation_string | Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an, Shaanxi, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210115146 |
| authorships[3].institutions[0].ror | https://ror.org/01hy8fk80 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210115146 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guizhou Electromechanical Research and Design Institute |
| authorships[3].institutions[1].id | https://openalex.org/I149594827 |
| authorships[3].institutions[1].ror | https://ror.org/05s92vm98 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I149594827 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Xidian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zuntian Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an, Shaanxi, China, State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[4].author.id | https://openalex.org/A5114973670 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-2704-6807 |
| authorships[4].author.display_name | Rui Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[4].affiliations[0].raw_affiliation_string | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210088164 |
| authorships[4].institutions[0].ror | https://ror.org/012rct222 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210088164 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Changchun Institute of Optics, Fine Mechanics and Physics |
| authorships[4].institutions[1].id | https://openalex.org/I19820366 |
| authorships[4].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[1].type | government |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rui Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China |
| authorships[5].author.id | https://openalex.org/A5102932159 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6128-2676 |
| authorships[5].author.display_name | Liyun Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[5].affiliations[0].raw_affiliation_string | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[5].institutions[0].id | https://openalex.org/I149594827 |
| authorships[5].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xidian University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liyun Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[6].author.id | https://openalex.org/A5067798266 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0640-4060 |
| authorships[6].author.display_name | Yunsong Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[6].affiliations[0].raw_affiliation_string | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| authorships[6].institutions[0].id | https://openalex.org/I149594827 |
| authorships[6].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Xidian University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yunsong Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/10400763.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AFE-Net: Attention-Guided Feature Enhancement Network for Infrared Small Target Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12389 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Infrared Target Detection Methodologies |
| related_works | https://openalex.org/W4390516098, https://openalex.org/W2161474341, https://openalex.org/W4302615923, https://openalex.org/W2181948922, https://openalex.org/W3203142394, https://openalex.org/W2351061015, https://openalex.org/W2384362569, https://openalex.org/W4220731478, https://openalex.org/W1974101135, https://openalex.org/W2017509870 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2024.3354244 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/10400763.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2024.3354244 |
| primary_location.id | doi:10.1109/jstars.2024.3354244 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/10400763.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2024.3354244 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3048644861, https://openalex.org/W2589002978, https://openalex.org/W2948002932, https://openalex.org/W1992873714, https://openalex.org/W2058928435, https://openalex.org/W2942839421, https://openalex.org/W2041560658, https://openalex.org/W2080197848, https://openalex.org/W1978993121, https://openalex.org/W2900678331, https://openalex.org/W2912919760, https://openalex.org/W2407220925, https://openalex.org/W2578504242, https://openalex.org/W2604768956, https://openalex.org/W2537662059, https://openalex.org/W2947125416, https://openalex.org/W3118249006, https://openalex.org/W3118934234, https://openalex.org/W3194894013, https://openalex.org/W4226043641, https://openalex.org/W1901129140, https://openalex.org/W2963091558, https://openalex.org/W2560311620, https://openalex.org/W2955058313, https://openalex.org/W2194775991, https://openalex.org/W3138516171, https://openalex.org/W6797235774, https://openalex.org/W4315705623, https://openalex.org/W2922509574, https://openalex.org/W6751733626, https://openalex.org/W6772525498, https://openalex.org/W6785645852, https://openalex.org/W3010079414, https://openalex.org/W2999295839, https://openalex.org/W3101487523, https://openalex.org/W2997225633, https://openalex.org/W3175227919 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 81, 99 |
| abstract_inverted_index.CA | 82 |
| abstract_inverted_index.In | 20 |
| abstract_inverted_index.an | 25 |
| abstract_inverted_index.by | 116, 134 |
| abstract_inverted_index.in | 12, 44, 75, 156 |
| abstract_inverted_index.is | 4, 154 |
| abstract_inverted_index.of | 40, 50, 108, 138, 158, 167, 176, 195 |
| abstract_inverted_index.on | 84, 182 |
| abstract_inverted_index.to | 8, 89, 104, 148, 163 |
| abstract_inverted_index.we | 23, 79, 97 |
| abstract_inverted_index.RSI | 152 |
| abstract_inverted_index.The | 47, 127, 151 |
| abstract_inverted_index.and | 17, 37, 42, 56, 68, 86, 112, 186 |
| abstract_inverted_index.can | 33, 142, 172 |
| abstract_inverted_index.due | 7 |
| abstract_inverted_index.few | 10 |
| abstract_inverted_index.key | 52 |
| abstract_inverted_index.low | 14 |
| abstract_inverted_index.our | 196 |
| abstract_inverted_index.the | 9, 35, 76, 106, 118, 123, 159, 174, 177, 183, 193 |
| abstract_inverted_index.CFAR | 128 |
| abstract_inverted_index.EDIG | 77 |
| abstract_inverted_index.into | 122 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.with | 93, 145, 189 |
| abstract_inverted_index.(RSI) | 72 |
| abstract_inverted_index.SIRST | 184 |
| abstract_inverted_index.Then, | 96 |
| abstract_inverted_index.alarm | 64 |
| abstract_inverted_index.block | 103 |
| abstract_inverted_index.false | 63 |
| abstract_inverted_index.front | 157 |
| abstract_inverted_index.input | 71 |
| abstract_inverted_index.local | 36 |
| abstract_inverted_index.noise | 115 |
| abstract_inverted_index.scale | 70 |
| abstract_inverted_index.small | 1, 109, 169 |
| abstract_inverted_index.three | 51 |
| abstract_inverted_index.which | 32, 141, 171 |
| abstract_inverted_index.(CFAR) | 66 |
| abstract_inverted_index.(EDIG) | 60 |
| abstract_inverted_index.employ | 80 |
| abstract_inverted_index.entire | 160 |
| abstract_inverted_index.global | 132 |
| abstract_inverted_index.higher | 94 |
| abstract_inverted_index.impose | 98 |
| abstract_inverted_index.layers | 88 |
| abstract_inverted_index.module | 129, 153 |
| abstract_inverted_index.namely | 54 |
| abstract_inverted_index.pixels | 11 |
| abstract_inverted_index.placed | 155 |
| abstract_inverted_index.random | 69 |
| abstract_inverted_index.ratio, | 16 |
| abstract_inverted_index.remove | 143 |
| abstract_inverted_index.select | 90 |
| abstract_inverted_index.target | 2 |
| abstract_inverted_index.AFE-Net | 48 |
| abstract_inverted_index.complex | 18 |
| abstract_inverted_index.dataset | 185 |
| abstract_inverted_index.decoder | 57 |
| abstract_inverted_index.encoder | 55 |
| abstract_inverted_index.enhance | 173 |
| abstract_inverted_index.extract | 164 |
| abstract_inverted_index.feature | 28, 91 |
| abstract_inverted_index.images. | 46 |
| abstract_inverted_index.layers, | 140 |
| abstract_inverted_index.method. | 198 |
| abstract_inverted_index.methods | 191 |
| abstract_inverted_index.module, | 61, 67, 78 |
| abstract_inverted_index.module. | 73 |
| abstract_inverted_index.network | 30, 162 |
| abstract_inverted_index.propose | 24 |
| abstract_inverted_index.removal | 65 |
| abstract_inverted_index.results | 181 |
| abstract_inverted_index.similar | 146 |
| abstract_inverted_index.targets | 41, 111 |
| abstract_inverted_index.Infrared | 0 |
| abstract_inverted_index.affluent | 131 |
| abstract_inverted_index.article, | 22 |
| abstract_inverted_index.channels | 92 |
| abstract_inverted_index.clutters | 144 |
| abstract_inverted_index.consists | 49 |
| abstract_inverted_index.decoding | 87 |
| abstract_inverted_index.detailed | 120 |
| abstract_inverted_index.encoding | 85 |
| abstract_inverted_index.extracts | 130 |
| abstract_inverted_index.features | 39, 107, 121, 133, 147, 166 |
| abstract_inverted_index.guidance | 59 |
| abstract_inverted_index.infrared | 45, 110, 149, 168 |
| abstract_inverted_index.leverage | 34 |
| abstract_inverted_index.modules, | 53 |
| abstract_inverted_index.network. | 179 |
| abstract_inverted_index.nonlocal | 38, 136 |
| abstract_inverted_index.possible | 114 |
| abstract_inverted_index.proposed | 178, 197 |
| abstract_inverted_index.semantic | 125 |
| abstract_inverted_index.suppress | 113 |
| abstract_inverted_index.targets, | 13, 170 |
| abstract_inverted_index.targets. | 150 |
| abstract_inverted_index.attention | 102 |
| abstract_inverted_index.bottom-up | 100 |
| abstract_inverted_index.cascading | 62, 135 |
| abstract_inverted_index.detection | 3, 161 |
| abstract_inverted_index.different | 139 |
| abstract_inverted_index.effective | 26 |
| abstract_inverted_index.features. | 126 |
| abstract_inverted_index.highlight | 105 |
| abstract_inverted_index.low-level | 119 |
| abstract_inverted_index.mechanism | 83 |
| abstract_inverted_index.pointwise | 101 |
| abstract_inverted_index.(AFE-Net), | 31 |
| abstract_inverted_index.background | 43 |
| abstract_inverted_index.high-level | 124 |
| abstract_inverted_index.multiscale | 165 |
| abstract_inverted_index.operations | 137 |
| abstract_inverted_index.robustness | 175 |
| abstract_inverted_index.background. | 19 |
| abstract_inverted_index.challenging | 6 |
| abstract_inverted_index.comparisons | 188 |
| abstract_inverted_index.demonstrate | 192 |
| abstract_inverted_index.enhancement | 29 |
| abstract_inverted_index.interactive | 58 |
| abstract_inverted_index.superiority | 194 |
| abstract_inverted_index.Experimental | 180 |
| abstract_inverted_index.considerably | 5 |
| abstract_inverted_index.Specifically, | 74 |
| abstract_inverted_index.comprehensive | 187 |
| abstract_inverted_index.contribution. | 95 |
| abstract_inverted_index.incorporating | 117 |
| abstract_inverted_index.representative | 190 |
| abstract_inverted_index.signal-to-noise | 15 |
| abstract_inverted_index.attention-guided | 27 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.99378603 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |