AFFIRM: Affinity Fusion-Based Framework for Iteratively Random Motion Correction of Multi-Slice Fetal Brain MRI Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/tmi.2022.3208277
Multi-slice magnetic resonance images of the fetal brain are usually contaminated by severe and arbitrary fetal and maternal motion. Hence, stable and robust motion correction is necessary to reconstruct high-resolution 3D fetal brain volume for clinical diagnosis and quantitative analysis. However, the conventional registration-based correction has a limited capture range and is insufficient for detecting relatively large motions. Here, we present a novel Affinity Fusion-based Framework for Iteratively Random Motion (AFFIRM) correction of the multi-slice fetal brain MRI. It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion, which resembles the iterations between slice-to-volume registration and volumetric reconstruction in the regular pipeline. The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data, with a 48.4% reduction of mean absolute error for rotation and 61.3% for displacement. We then incorporated AFFIRM into the multi-resolution slice-to-volume registration and tested it on the real-world fetal MRI scans at different gestation stages. The results indicated that adding AFFIRM to the conventional pipeline improved the success rate of fetal brain super-resolution reconstruction from 77.2% to 91.9%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tmi.2022.3208277
- OA Status
- green
- Cited By
- 22
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280530093
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280530093Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tmi.2022.3208277Digital Object Identifier
- Title
-
AFFIRM: Affinity Fusion-Based Framework for Iteratively Random Motion Correction of Multi-Slice Fetal Brain MRIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-21Full publication date if available
- Authors
-
Wen Shi, Haoan Xu, Cong Sun, Jiwei Sun, Yamin Li, Xinyi Xu, Tianshu Zheng, Yi Zhang, Guangbin Wang, Dan WuList of authors in order
- Landing page
-
https://doi.org/10.1109/tmi.2022.3208277Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.05851Direct OA link when available
- Concepts
-
Artificial intelligence, Computer vision, Computer science, Magnetic resonance imaging, Pipeline (software), Iterative reconstruction, Image fusion, Motion (physics), Rotation (mathematics), Volume (thermodynamics), Displacement (psychology), Pattern recognition (psychology), Physics, Image (mathematics), Medicine, Radiology, Psychology, Psychotherapist, Quantum mechanics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 10, 2023: 5, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280530093 |
|---|---|
| doi | https://doi.org/10.1109/tmi.2022.3208277 |
| ids.doi | https://doi.org/10.1109/tmi.2022.3208277 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36129858 |
| ids.openalex | https://openalex.org/W4280530093 |
| fwci | 20.01387544 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D008279 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Magnetic Resonance Imaging |
| mesh[1].qualifier_ui | Q000000981 |
| mesh[1].descriptor_ui | D005333 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | diagnostic imaging |
| mesh[1].descriptor_name | Fetus |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D059906 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neuroimaging |
| mesh[3].qualifier_ui | Q000000981 |
| mesh[3].descriptor_ui | D001921 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | diagnostic imaging |
| mesh[3].descriptor_name | Brain |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D021621 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Imaging, Three-Dimensional |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D009038 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Motion |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D008279 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Magnetic Resonance Imaging |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D005333 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Fetus |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D059906 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Neuroimaging |
| mesh[10].qualifier_ui | Q000000981 |
| mesh[10].descriptor_ui | D001921 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | diagnostic imaging |
| mesh[10].descriptor_name | Brain |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D021621 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Imaging, Three-Dimensional |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D009038 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Motion |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| type | article |
| title | AFFIRM: Affinity Fusion-Based Framework for Iteratively Random Motion Correction of Multi-Slice Fetal Brain MRI |
| awards[0].id | https://openalex.org/G8734054066 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 81971606 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4911459720 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 82122032 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G4480648113 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61801424 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G7728516887 |
| awards[3].funder_id | https://openalex.org/F4320321540 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2018YFE0114600 |
| awards[3].funder_display_name | Ministry of Science and Technology of the People's Republic of China |
| biblio.issue | 1 |
| biblio.volume | 42 |
| biblio.last_page | 219 |
| biblio.first_page | 209 |
| topics[0].id | https://openalex.org/T12552 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2735 |
| topics[0].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[0].display_name | Fetal and Pediatric Neurological Disorders |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11184 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9871000051498413 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2735 |
| topics[2].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[2].display_name | Neonatal and fetal brain pathology |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321540 |
| funders[1].ror | https://ror.org/027s68j25 |
| funders[1].display_name | Ministry of Science and Technology of the People's Republic of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7295918464660645 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C31972630 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6826255917549133 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[1].display_name | Computer vision |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6002215147018433 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C143409427 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5513418316841125 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[3].display_name | Magnetic resonance imaging |
| concepts[4].id | https://openalex.org/C43521106 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5169167518615723 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[4].display_name | Pipeline (software) |
| concepts[5].id | https://openalex.org/C141379421 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5080795288085938 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[5].display_name | Iterative reconstruction |
| concepts[6].id | https://openalex.org/C69744172 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4892694652080536 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860822 |
| concepts[6].display_name | Image fusion |
| concepts[7].id | https://openalex.org/C104114177 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47560128569602966 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[7].display_name | Motion (physics) |
| concepts[8].id | https://openalex.org/C74050887 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47161203622817993 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q848368 |
| concepts[8].display_name | Rotation (mathematics) |
| concepts[9].id | https://openalex.org/C20556612 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4418207108974457 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4469374 |
| concepts[9].display_name | Volume (thermodynamics) |
| concepts[10].id | https://openalex.org/C107551265 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4236762225627899 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1458245 |
| concepts[10].display_name | Displacement (psychology) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.39833012223243713 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.180500328540802 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.14807340502738953 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1188904345035553 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C126838900 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1100015640258789 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[15].display_name | Radiology |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C542102704 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[17].display_name | Psychotherapist |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7295918464660645 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-vision |
| keywords[1].score | 0.6826255917549133 |
| keywords[1].display_name | Computer vision |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6002215147018433 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[3].score | 0.5513418316841125 |
| keywords[3].display_name | Magnetic resonance imaging |
| keywords[4].id | https://openalex.org/keywords/pipeline |
| keywords[4].score | 0.5169167518615723 |
| keywords[4].display_name | Pipeline (software) |
| keywords[5].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[5].score | 0.5080795288085938 |
| keywords[5].display_name | Iterative reconstruction |
| keywords[6].id | https://openalex.org/keywords/image-fusion |
| keywords[6].score | 0.4892694652080536 |
| keywords[6].display_name | Image fusion |
| keywords[7].id | https://openalex.org/keywords/motion |
| keywords[7].score | 0.47560128569602966 |
| keywords[7].display_name | Motion (physics) |
| keywords[8].id | https://openalex.org/keywords/rotation |
| keywords[8].score | 0.47161203622817993 |
| keywords[8].display_name | Rotation (mathematics) |
| keywords[9].id | https://openalex.org/keywords/volume |
| keywords[9].score | 0.4418207108974457 |
| keywords[9].display_name | Volume (thermodynamics) |
| keywords[10].id | https://openalex.org/keywords/displacement |
| keywords[10].score | 0.4236762225627899 |
| keywords[10].display_name | Displacement (psychology) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.39833012223243713 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.180500328540802 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.14807340502738953 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.1188904345035553 |
| keywords[14].display_name | Medicine |
| keywords[15].id | https://openalex.org/keywords/radiology |
| keywords[15].score | 0.1100015640258789 |
| keywords[15].display_name | Radiology |
| language | en |
| locations[0].id | doi:10.1109/tmi.2022.3208277 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S58069681 |
| locations[0].source.issn | 0278-0062, 1558-254X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0278-0062 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Medical Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Medical Imaging |
| locations[0].landing_page_url | https://doi.org/10.1109/tmi.2022.3208277 |
| locations[1].id | pmid:36129858 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on medical imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36129858 |
| locations[2].id | pmh:oai:arXiv.org:2205.05851 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/2205.05851 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/2205.05851 |
| indexed_in | arxiv, crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5002386229 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5312-4889 |
| authorships[0].author.display_name | Wen Shi |
| authorships[0].countries | CN, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I145311948, https://openalex.org/I2799853436 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA |
| authorships[0].institutions[0].id | https://openalex.org/I76130692 |
| authorships[0].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University |
| authorships[0].institutions[1].id | https://openalex.org/I2799853436 |
| authorships[0].institutions[1].ror | https://ror.org/037zgn354 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I2799853436 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Johns Hopkins Medicine |
| authorships[0].institutions[2].id | https://openalex.org/I145311948 |
| authorships[0].institutions[2].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wen Shi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA |
| authorships[1].author.id | https://openalex.org/A5067596845 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7555-9381 |
| authorships[1].author.display_name | Haoan Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haoan Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[2].author.id | https://openalex.org/A5101801880 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7260-483X |
| authorships[2].author.display_name | Cong Sun |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I154099455 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiology, Cheeloo College of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China |
| authorships[2].institutions[0].id | https://openalex.org/I154099455 |
| authorships[2].institutions[0].ror | https://ror.org/0207yh398 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I154099455 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shandong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cong Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiology, Cheeloo College of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China |
| authorships[3].author.id | https://openalex.org/A5000932469 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jiwei Sun |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiwei Sun |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[4].author.id | https://openalex.org/A5100347634 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0010-0848 |
| authorships[4].author.display_name | Yamin Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China |
| authorships[4].institutions[0].id | https://openalex.org/I183067930 |
| authorships[4].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yamin Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China |
| authorships[5].author.id | https://openalex.org/A5043320141 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4703-4040 |
| authorships[5].author.display_name | Xinyi Xu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I76130692 |
| authorships[5].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhejiang University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xinyi Xu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[6].author.id | https://openalex.org/A5025724253 |
| authorships[6].author.orcid | https://orcid.org/0009-0001-5052-8837 |
| authorships[6].author.display_name | Tianshu Zheng |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[6].institutions[0].id | https://openalex.org/I76130692 |
| authorships[6].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Zhejiang University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Tianshu Zheng |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[7].author.id | https://openalex.org/A5100388076 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8738-1851 |
| authorships[7].author.display_name | Yi Zhang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[7].institutions[0].id | https://openalex.org/I76130692 |
| authorships[7].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Zhejiang University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yi Zhang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China |
| authorships[8].author.id | https://openalex.org/A5017257163 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7410-5540 |
| authorships[8].author.display_name | Guangbin Wang |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I154099455 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Radiology, Cheeloo College of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China |
| authorships[8].institutions[0].id | https://openalex.org/I154099455 |
| authorships[8].institutions[0].ror | https://ror.org/0207yh398 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I154099455 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Shandong University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Guangbin Wang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Radiology, Cheeloo College of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China |
| authorships[9].author.id | https://openalex.org/A5058150411 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9303-5821 |
| authorships[9].author.display_name | Dan Wu |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[9].affiliations[0].raw_affiliation_string | Binjiang Research Institute, Zhejiang University, Hangzhou, China |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I76130692 |
| authorships[9].affiliations[1].raw_affiliation_string | Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Intelligent Biomedical Instrumentation, Zhejiang University, Hangzhou, China |
| authorships[9].institutions[0].id | https://openalex.org/I76130692 |
| authorships[9].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Zhejiang University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Dan Wu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Binjiang Research Institute, Zhejiang University, Hangzhou, China, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Intelligent Biomedical Instrumentation, Zhejiang University, Hangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.05851 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | AFFIRM: Affinity Fusion-Based Framework for Iteratively Random Motion Correction of Multi-Slice Fetal Brain MRI |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12552 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2735 |
| primary_topic.subfield.display_name | Pediatrics, Perinatology and Child Health |
| primary_topic.display_name | Fetal and Pediatric Neurological Disorders |
| related_works | https://openalex.org/W3037187668, https://openalex.org/W4234772502, https://openalex.org/W2380685755, https://openalex.org/W2252100032, https://openalex.org/W2963436428, https://openalex.org/W4400978025, https://openalex.org/W2918743509, https://openalex.org/W2734796617, https://openalex.org/W3083218341, https://openalex.org/W3034087822 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.05851 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.05851 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.05851 |
| primary_location.id | doi:10.1109/tmi.2022.3208277 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S58069681 |
| primary_location.source.issn | 0278-0062, 1558-254X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0278-0062 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Medical Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Medical Imaging |
| primary_location.landing_page_url | https://doi.org/10.1109/tmi.2022.3208277 |
| publication_date | 2022-09-21 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2999546184, https://openalex.org/W2902949230, https://openalex.org/W3137323197, https://openalex.org/W2561093012, https://openalex.org/W2135264048, https://openalex.org/W1994514622, https://openalex.org/W2024251722, https://openalex.org/W2989249732, https://openalex.org/W1982011685, https://openalex.org/W2002800263, https://openalex.org/W3082458882, https://openalex.org/W2766975021, https://openalex.org/W3196886293, https://openalex.org/W2594602134, https://openalex.org/W2975527920, https://openalex.org/W2591825272, https://openalex.org/W2891590469, https://openalex.org/W3013056581, https://openalex.org/W2922243907, https://openalex.org/W2963542386, https://openalex.org/W2147555557, https://openalex.org/W3035570025, https://openalex.org/W2799211965, https://openalex.org/W2612706635, https://openalex.org/W2200124539, https://openalex.org/W2963856988, https://openalex.org/W2780675120, https://openalex.org/W2983134350, https://openalex.org/W2887843334, https://openalex.org/W2344328023, https://openalex.org/W2805701966, https://openalex.org/W3092466412, https://openalex.org/W2607030091, https://openalex.org/W2157331557, https://openalex.org/W6616837769, https://openalex.org/W6739901393, https://openalex.org/W2752782242, https://openalex.org/W2922435819, https://openalex.org/W2997136715, https://openalex.org/W2963091558, https://openalex.org/W3092643288, https://openalex.org/W2109026728, https://openalex.org/W2121236251, https://openalex.org/W2128884071, https://openalex.org/W2039887952, https://openalex.org/W2977883299, https://openalex.org/W6674330103, https://openalex.org/W2117340355, https://openalex.org/W2142592339, https://openalex.org/W2090612612, https://openalex.org/W2549627956, https://openalex.org/W3025011581, https://openalex.org/W2963956866, https://openalex.org/W2053101950, https://openalex.org/W2085681975, https://openalex.org/W2166966312, https://openalex.org/W2942583126, https://openalex.org/W2950564960, https://openalex.org/W3007056952, https://openalex.org/W3098896577, https://openalex.org/W2095705004, https://openalex.org/W3099533884 |
| referenced_works_count | 62 |
| abstract_inverted_index.a | 46, 61, 138 |
| abstract_inverted_index.2D | 93 |
| abstract_inverted_index.3D | 30, 97 |
| abstract_inverted_index.It | 78 |
| abstract_inverted_index.We | 151 |
| abstract_inverted_index.at | 169 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.in | 112 |
| abstract_inverted_index.is | 25, 51 |
| abstract_inverted_index.it | 162 |
| abstract_inverted_index.of | 4, 72, 86, 123, 141, 187 |
| abstract_inverted_index.on | 132, 163 |
| abstract_inverted_index.to | 27, 179, 194 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.MRI | 167 |
| abstract_inverted_index.The | 116, 173 |
| abstract_inverted_index.and | 13, 16, 21, 37, 50, 88, 95, 109, 126, 147, 160 |
| abstract_inverted_index.are | 8 |
| abstract_inverted_index.for | 34, 53, 66, 145, 149 |
| abstract_inverted_index.has | 45 |
| abstract_inverted_index.the | 5, 41, 73, 80, 90, 104, 113, 120, 133, 156, 164, 180, 184 |
| abstract_inverted_index.MRI. | 77 |
| abstract_inverted_index.from | 83, 192 |
| abstract_inverted_index.into | 155 |
| abstract_inverted_index.mean | 142 |
| abstract_inverted_index.rate | 186 |
| abstract_inverted_index.that | 176 |
| abstract_inverted_index.then | 152 |
| abstract_inverted_index.with | 137 |
| abstract_inverted_index.48.4% | 139 |
| abstract_inverted_index.61.3% | 148 |
| abstract_inverted_index.77.2% | 193 |
| abstract_inverted_index.Here, | 58 |
| abstract_inverted_index.brain | 7, 32, 76, 124, 189 |
| abstract_inverted_index.data, | 136 |
| abstract_inverted_index.error | 144 |
| abstract_inverted_index.fetal | 6, 15, 31, 75, 166, 188 |
| abstract_inverted_index.large | 56 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.other | 128 |
| abstract_inverted_index.range | 49 |
| abstract_inverted_index.scans | 168 |
| abstract_inverted_index.using | 99 |
| abstract_inverted_index.which | 102 |
| abstract_inverted_index.91.9%. | 195 |
| abstract_inverted_index.AFFIRM | 154, 178 |
| abstract_inverted_index.Hence, | 19 |
| abstract_inverted_index.Motion | 69 |
| abstract_inverted_index.Random | 68 |
| abstract_inverted_index.adding | 177 |
| abstract_inverted_index.images | 3 |
| abstract_inverted_index.learns | 79 |
| abstract_inverted_index.method | 117 |
| abstract_inverted_index.motion | 23, 82, 121 |
| abstract_inverted_index.robust | 22 |
| abstract_inverted_index.severe | 12 |
| abstract_inverted_index.slices | 87, 94 |
| abstract_inverted_index.stable | 20 |
| abstract_inverted_index.stacks | 85 |
| abstract_inverted_index.tested | 161 |
| abstract_inverted_index.volume | 33, 98 |
| abstract_inverted_index.between | 92, 106 |
| abstract_inverted_index.capture | 48 |
| abstract_inverted_index.fusion, | 101 |
| abstract_inverted_index.limited | 47 |
| abstract_inverted_index.methods | 131 |
| abstract_inverted_index.motion. | 18 |
| abstract_inverted_index.present | 60 |
| abstract_inverted_index.regular | 114 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.stages. | 172 |
| abstract_inverted_index.success | 185 |
| abstract_inverted_index.usually | 9 |
| abstract_inverted_index.(AFFIRM) | 70 |
| abstract_inverted_index.Affinity | 63 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.absolute | 143 |
| abstract_inverted_index.affinity | 100 |
| abstract_inverted_index.clinical | 35 |
| abstract_inverted_index.features | 91 |
| abstract_inverted_index.improved | 183 |
| abstract_inverted_index.magnetic | 1 |
| abstract_inverted_index.maternal | 17 |
| abstract_inverted_index.motions. | 57 |
| abstract_inverted_index.multiple | 84 |
| abstract_inverted_index.pipeline | 182 |
| abstract_inverted_index.rotation | 146 |
| abstract_inverted_index.Framework | 65 |
| abstract_inverted_index.analysis. | 39 |
| abstract_inverted_index.arbitrary | 14 |
| abstract_inverted_index.detecting | 54 |
| abstract_inverted_index.diagnosis | 36 |
| abstract_inverted_index.different | 170 |
| abstract_inverted_index.estimates | 119 |
| abstract_inverted_index.gestation | 171 |
| abstract_inverted_index.indicated | 175 |
| abstract_inverted_index.necessary | 26 |
| abstract_inverted_index.pipeline. | 115 |
| abstract_inverted_index.reduction | 140 |
| abstract_inverted_index.resembles | 103 |
| abstract_inverted_index.resonance | 2 |
| abstract_inverted_index.simulated | 134 |
| abstract_inverted_index.accurately | 118 |
| abstract_inverted_index.correction | 24, 44, 71 |
| abstract_inverted_index.integrates | 89 |
| abstract_inverted_index.iterations | 105 |
| abstract_inverted_index.real-world | 165 |
| abstract_inverted_index.regardless | 122 |
| abstract_inverted_index.relatively | 55 |
| abstract_inverted_index.sequential | 81 |
| abstract_inverted_index.volumetric | 110 |
| abstract_inverted_index.Iteratively | 67 |
| abstract_inverted_index.Multi-slice | 0 |
| abstract_inverted_index.multi-slice | 74 |
| abstract_inverted_index.outperforms | 127 |
| abstract_inverted_index.reconstruct | 28 |
| abstract_inverted_index.Fusion-based | 64 |
| abstract_inverted_index.contaminated | 10 |
| abstract_inverted_index.conventional | 42, 181 |
| abstract_inverted_index.incorporated | 153 |
| abstract_inverted_index.insufficient | 52 |
| abstract_inverted_index.orientations | 125 |
| abstract_inverted_index.quantitative | 38 |
| abstract_inverted_index.registration | 108, 159 |
| abstract_inverted_index.displacement. | 150 |
| abstract_inverted_index.reconstructed | 96 |
| abstract_inverted_index.learning-based | 130 |
| abstract_inverted_index.reconstruction | 111, 191 |
| abstract_inverted_index.high-resolution | 29 |
| abstract_inverted_index.slice-to-volume | 107, 158 |
| abstract_inverted_index.motion-corrupted | 135 |
| abstract_inverted_index.multi-resolution | 157 |
| abstract_inverted_index.state-of-the-art | 129 |
| abstract_inverted_index.super-resolution | 190 |
| abstract_inverted_index.registration-based | 43 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.98007075 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |