AFMnanoSALQ: An Accurate Detection Framework for Semi-Automatic Labeling and Quantitative Analysis of α-Hemolysin Nanopores Using Intensity-Height Cues in HS-AFM Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.02.26.640237
High-Speed Atomic Force Microscopy (HS-AFM) enables imaging of biological structures and dynamics with nanometer spatial and millisecond temporal resolution. AFM images contain three-dimensional (3D) surface information, comprising two-dimensional (2D) lateral (x-y) and one-dimensional (1D) height (z) encoded in pixel intensity. This dynamic structure poses significant challenges for instance boundary detection and morphological analysis. To address this, we develop AFMnanoSALQ, a feature-driven computational framework for semi-automatic labeling and quantitative (SALQ) detection and morphological measurement of HS-AFM data. Unlike conventional methods that rely solely on either visual or geometric features for 2D boundary detection, AFM- nanoSALQ integrates both to extract 3D morphology. It requires neither annotated data nor intensive training, enabling fast deployment at minimal cost. With performance comparable to typical deep-learning models, AFMnanoSALQ facilitates semi-automatic labeling, making it a practical tool for preliminary data inspection and accelerating the creation of training datasets. As a case study, we focus on α-hemolysin (αHL), a β-barrel pore-forming toxin secreted by Staphylococcus aureus , using both synthetic and experimental AFM data. AFMnanoSALQ provides a foundation for future deep learning studies, enabling both dataset generation and cross-validation between feature-driven and data-driven approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.02.26.640237
- https://www.biorxiv.org/content/biorxiv/early/2025/03/02/2025.02.26.640237.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408084912
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408084912Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.02.26.640237Digital Object Identifier
- Title
-
AFMnanoSALQ: An Accurate Detection Framework for Semi-Automatic Labeling and Quantitative Analysis of α-Hemolysin Nanopores Using Intensity-Height Cues in HS-AFM DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-02Full publication date if available
- Authors
-
Thi-Ngoc-Truc Nguyen, Ngoc Quoc Ly, Ngan Thi Phuong Le, Hoang Duc Nguyen, Kien Xuan NgoList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.02.26.640237Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/03/02/2025.02.26.640237.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/03/02/2025.02.26.640237.full.pdfDirect OA link when available
- Concepts
-
Nanopore, Atomic force microscopy, Materials science, Nanotechnology, Image processing, Computer science, Image (mathematics), Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408084912 |
|---|---|
| doi | https://doi.org/10.1101/2025.02.26.640237 |
| ids.doi | https://doi.org/10.1101/2025.02.26.640237 |
| ids.openalex | https://openalex.org/W4408084912 |
| fwci | 3.45133589 |
| type | preprint |
| title | AFMnanoSALQ: An Accurate Detection Framework for Semi-Automatic Labeling and Quantitative Analysis of α-Hemolysin Nanopores Using Intensity-Height Cues in HS-AFM Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.8044999837875366 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10491 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.7692999839782715 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Enhanced Oil Recovery Techniques |
| topics[2].id | https://openalex.org/T12282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.7222999930381775 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Mineral Processing and Grinding |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C141795571 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8125569820404053 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q580942 |
| concepts[0].display_name | Nanopore |
| concepts[1].id | https://openalex.org/C102951782 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7326482534408569 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q49295 |
| concepts[1].display_name | Atomic force microscopy |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.49516192078590393 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| concepts[3].id | https://openalex.org/C171250308 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4690065085887909 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[3].display_name | Nanotechnology |
| concepts[4].id | https://openalex.org/C9417928 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4134008288383484 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[4].display_name | Image processing |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3698505759239197 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.35051625967025757 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2341216504573822 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/nanopore |
| keywords[0].score | 0.8125569820404053 |
| keywords[0].display_name | Nanopore |
| keywords[1].id | https://openalex.org/keywords/atomic-force-microscopy |
| keywords[1].score | 0.7326482534408569 |
| keywords[1].display_name | Atomic force microscopy |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.49516192078590393 |
| keywords[2].display_name | Materials science |
| keywords[3].id | https://openalex.org/keywords/nanotechnology |
| keywords[3].score | 0.4690065085887909 |
| keywords[3].display_name | Nanotechnology |
| keywords[4].id | https://openalex.org/keywords/image-processing |
| keywords[4].score | 0.4134008288383484 |
| keywords[4].display_name | Image processing |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3698505759239197 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.35051625967025757 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.2341216504573822 |
| keywords[7].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1101/2025.02.26.640237 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/03/02/2025.02.26.640237.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.02.26.640237 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027540907 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-6993-8920 |
| authorships[0].author.display_name | Thi-Ngoc-Truc Nguyen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thuyen Vinh Tran Nguyen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024762397 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4476-2456 |
| authorships[1].author.display_name | Ngoc Quoc Ly |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ngoc Quoc Ly |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5041481111 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ngan Thi Phuong Le |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ngan Thi Phuong Le |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100766549 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2437-3568 |
| authorships[3].author.display_name | Hoang Duc Nguyen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hoang Duc Nguyen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5003328364 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9710-5452 |
| authorships[4].author.display_name | Kien Xuan Ngo |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kien Xuan Ngo |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/03/02/2025.02.26.640237.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-03-03T00:00:00 |
| display_name | AFMnanoSALQ: An Accurate Detection Framework for Semi-Automatic Labeling and Quantitative Analysis of α-Hemolysin Nanopores Using Intensity-Height Cues in HS-AFM Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.8044999837875366 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2055215578, https://openalex.org/W3097090396, https://openalex.org/W2734703372, https://openalex.org/W2267068863, https://openalex.org/W1989500433, https://openalex.org/W2924313437, https://openalex.org/W2328692626, https://openalex.org/W3141442004, https://openalex.org/W2011288926, https://openalex.org/W2952466397 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.02.26.640237 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/03/02/2025.02.26.640237.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.02.26.640237 |
| primary_location.id | doi:10.1101/2025.02.26.640237 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/03/02/2025.02.26.640237.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.02.26.640237 |
| publication_date | 2025-03-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4389455428, https://openalex.org/W3169794276, https://openalex.org/W4388939071, https://openalex.org/W3153477612, https://openalex.org/W2999677295, https://openalex.org/W2810460765, https://openalex.org/W4214840389, https://openalex.org/W4391052940, https://openalex.org/W4399283667, https://openalex.org/W2604474471, https://openalex.org/W3000656894, https://openalex.org/W4406221710, https://openalex.org/W3183475563, https://openalex.org/W4396721167, https://openalex.org/W4405514994, https://openalex.org/W4315927151, https://openalex.org/W2001268252, https://openalex.org/W1799651446, https://openalex.org/W2030683115, https://openalex.org/W2089048815, https://openalex.org/W1992146696, https://openalex.org/W2041625018, https://openalex.org/W2108463938, https://openalex.org/W2078677256, https://openalex.org/W4391876853, https://openalex.org/W4288046804, https://openalex.org/W2784180243, https://openalex.org/W2963881378, https://openalex.org/W1901129140, https://openalex.org/W4390638513, https://openalex.org/W934352053, https://openalex.org/W4403615386, https://openalex.org/W4403622966, https://openalex.org/W4388671144, https://openalex.org/W4409322304 |
| referenced_works_count | 35 |
| abstract_inverted_index., | 159 |
| abstract_inverted_index.a | 60, 128, 143, 151, 169 |
| abstract_inverted_index.2D | 90 |
| abstract_inverted_index.3D | 99 |
| abstract_inverted_index.As | 142 |
| abstract_inverted_index.It | 101 |
| abstract_inverted_index.To | 54 |
| abstract_inverted_index.at | 112 |
| abstract_inverted_index.by | 156 |
| abstract_inverted_index.in | 38 |
| abstract_inverted_index.it | 127 |
| abstract_inverted_index.of | 8, 74, 139 |
| abstract_inverted_index.on | 83, 148 |
| abstract_inverted_index.or | 86 |
| abstract_inverted_index.to | 97, 118 |
| abstract_inverted_index.we | 57, 146 |
| abstract_inverted_index.(z) | 36 |
| abstract_inverted_index.AFM | 20, 165 |
| abstract_inverted_index.and | 11, 16, 32, 51, 67, 71, 135, 163, 180, 184 |
| abstract_inverted_index.for | 47, 64, 89, 131, 171 |
| abstract_inverted_index.nor | 106 |
| abstract_inverted_index.the | 137 |
| abstract_inverted_index.(1D) | 34 |
| abstract_inverted_index.(2D) | 29 |
| abstract_inverted_index.(3D) | 24 |
| abstract_inverted_index.AFM- | 93 |
| abstract_inverted_index.This | 41 |
| abstract_inverted_index.With | 115 |
| abstract_inverted_index.both | 96, 161, 177 |
| abstract_inverted_index.case | 144 |
| abstract_inverted_index.data | 105, 133 |
| abstract_inverted_index.deep | 173 |
| abstract_inverted_index.fast | 110 |
| abstract_inverted_index.rely | 81 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.tool | 130 |
| abstract_inverted_index.with | 13 |
| abstract_inverted_index.(x-y) | 31 |
| abstract_inverted_index.Force | 3 |
| abstract_inverted_index.cost. | 114 |
| abstract_inverted_index.data. | 76, 166 |
| abstract_inverted_index.focus | 147 |
| abstract_inverted_index.pixel | 39 |
| abstract_inverted_index.poses | 44 |
| abstract_inverted_index.this, | 56 |
| abstract_inverted_index.toxin | 154 |
| abstract_inverted_index.using | 160 |
| abstract_inverted_index.(SALQ) | 69 |
| abstract_inverted_index.Atomic | 2 |
| abstract_inverted_index.HS-AFM | 75 |
| abstract_inverted_index.Unlike | 77 |
| abstract_inverted_index.aureus | 158 |
| abstract_inverted_index.either | 84 |
| abstract_inverted_index.future | 172 |
| abstract_inverted_index.height | 35 |
| abstract_inverted_index.images | 21 |
| abstract_inverted_index.making | 126 |
| abstract_inverted_index.solely | 82 |
| abstract_inverted_index.study, | 145 |
| abstract_inverted_index.visual | 85 |
| abstract_inverted_index.(αHL), | 150 |
| abstract_inverted_index.address | 55 |
| abstract_inverted_index.between | 182 |
| abstract_inverted_index.contain | 22 |
| abstract_inverted_index.dataset | 178 |
| abstract_inverted_index.develop | 58 |
| abstract_inverted_index.dynamic | 42 |
| abstract_inverted_index.enables | 6 |
| abstract_inverted_index.encoded | 37 |
| abstract_inverted_index.extract | 98 |
| abstract_inverted_index.imaging | 7 |
| abstract_inverted_index.lateral | 30 |
| abstract_inverted_index.methods | 79 |
| abstract_inverted_index.minimal | 113 |
| abstract_inverted_index.models, | 121 |
| abstract_inverted_index.neither | 103 |
| abstract_inverted_index.spatial | 15 |
| abstract_inverted_index.surface | 25 |
| abstract_inverted_index.typical | 119 |
| abstract_inverted_index.(HS-AFM) | 5 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.boundary | 49, 91 |
| abstract_inverted_index.creation | 138 |
| abstract_inverted_index.dynamics | 12 |
| abstract_inverted_index.enabling | 109, 176 |
| abstract_inverted_index.features | 88 |
| abstract_inverted_index.instance | 48 |
| abstract_inverted_index.labeling | 66 |
| abstract_inverted_index.learning | 174 |
| abstract_inverted_index.nanoSALQ | 94 |
| abstract_inverted_index.provides | 168 |
| abstract_inverted_index.requires | 102 |
| abstract_inverted_index.secreted | 155 |
| abstract_inverted_index.studies, | 175 |
| abstract_inverted_index.temporal | 18 |
| abstract_inverted_index.training | 140 |
| abstract_inverted_index.analysis. | 53 |
| abstract_inverted_index.annotated | 104 |
| abstract_inverted_index.datasets. | 141 |
| abstract_inverted_index.detection | 50, 70 |
| abstract_inverted_index.framework | 63 |
| abstract_inverted_index.geometric | 87 |
| abstract_inverted_index.intensive | 107 |
| abstract_inverted_index.labeling, | 125 |
| abstract_inverted_index.nanometer | 14 |
| abstract_inverted_index.practical | 129 |
| abstract_inverted_index.structure | 43 |
| abstract_inverted_index.synthetic | 162 |
| abstract_inverted_index.training, | 108 |
| abstract_inverted_index.β-barrel | 152 |
| abstract_inverted_index.High-Speed | 1 |
| abstract_inverted_index.Microscopy | 4 |
| abstract_inverted_index.biological | 9 |
| abstract_inverted_index.challenges | 46 |
| abstract_inverted_index.comparable | 117 |
| abstract_inverted_index.comprising | 27 |
| abstract_inverted_index.deployment | 111 |
| abstract_inverted_index.detection, | 92 |
| abstract_inverted_index.foundation | 170 |
| abstract_inverted_index.generation | 179 |
| abstract_inverted_index.inspection | 134 |
| abstract_inverted_index.integrates | 95 |
| abstract_inverted_index.intensity. | 40 |
| abstract_inverted_index.structures | 10 |
| abstract_inverted_index.AFMnanoSALQ | 122, 167 |
| abstract_inverted_index.approaches. | 186 |
| abstract_inverted_index.data-driven | 185 |
| abstract_inverted_index.facilitates | 123 |
| abstract_inverted_index.measurement | 73 |
| abstract_inverted_index.millisecond | 17 |
| abstract_inverted_index.morphology. | 100 |
| abstract_inverted_index.performance | 116 |
| abstract_inverted_index.preliminary | 132 |
| abstract_inverted_index.resolution. | 19 |
| abstract_inverted_index.significant | 45 |
| abstract_inverted_index.AFMnanoSALQ, | 59 |
| abstract_inverted_index.accelerating | 136 |
| abstract_inverted_index.conventional | 78 |
| abstract_inverted_index.experimental | 164 |
| abstract_inverted_index.information, | 26 |
| abstract_inverted_index.pore-forming | 153 |
| abstract_inverted_index.quantitative | 68 |
| abstract_inverted_index.α-hemolysin | 149 |
| abstract_inverted_index.computational | 62 |
| abstract_inverted_index.deep-learning | 120 |
| abstract_inverted_index.morphological | 52, 72 |
| abstract_inverted_index.Staphylococcus | 157 |
| abstract_inverted_index.feature-driven | 61, 183 |
| abstract_inverted_index.semi-automatic | 65, 124 |
| abstract_inverted_index.one-dimensional | 33 |
| abstract_inverted_index.two-dimensional | 28 |
| abstract_inverted_index.cross-validation | 181 |
| abstract_inverted_index.three-dimensional | 23 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.7869183 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |